EXAME FINAL
ÁLGEBRA LINEAR

Duração da Prova: 2h 30m
Tolerância: 30m

15 de Janeiro de 2008

1. Discuta, em função dos parâmetros reais \(\alpha \) e \(\beta \), o sistema de equações lineares seguinte e determine o conjunto de soluções, para cada caso.

\[
\begin{align*}
\alpha x + \beta y + z &= 0 \\
\alpha x + 2\beta y + 2z &= 0 \\
\alpha x + \beta y + (\alpha + 1)z &= \beta - 1.
\end{align*}
\]

2. Seja \(A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \) uma matriz real, quadrada, de ordem 3 e suponha que \(\det(A) = -3 \).

Calcule:

i) \(\det(2A^{-1}) \)

ii) \(\det \begin{bmatrix} a & g & d \\ b & h & e \\ c & i & f \end{bmatrix} \)

iii) \(\det \begin{bmatrix} 2 & -1 & 0 \\ a & -a & b \\ d & -d & e \end{bmatrix} \)

iv) Na matriz \(A \), considere \(a = 2, c = d = 1, h = 3 \) e todos os outros parâmetros nulos. Determine, caso exista, a matriz inversa de \(A^2 \).

3. No espaço euclidiano \(\mathbb{R}^4 \) considere o produto interno definido, em relação à base canónica, pela matriz da métrica \(G = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \), e os sub espaços vectoriais,

\[
F = \langle (1, 1, 0, 0), (-1, 0, 1, 0), (1, 2, 1, 0) \rangle \quad e \\
G = \langle (0, 1, 1, 0), (0, 0, 0, 1) \rangle .
\]

i) Determine uma base para o subespaço vectorial \(F + G \).

ii) Determine uma base para o subespaço vectorial \((F + G)^{\perp} \).

iii) Determine o vetor de \(F + G \) mais próximo de \((1, 1, 1, 1) \).

4. Sejam \(V \) um espaço vectorial de dimensão \(n \), \(n \geq 1 \), e \(f : V \rightarrow V \) uma aplicação linear. Mostre que \(\text{Im}(f) = \text{Nuc}(f) \) se e somente se \(f \neq 0, f^2 \equiv 0 \), \(n \) é par e a nulidade de \(f \) é \(\frac{n}{2} \).

5. Considere o subespaço vectorial \(F = \{(x, y, z) \in \mathbb{R}^3 : x + 2y + z = 0\} \) do espaço vectorial \(\mathbb{R}^3 \). Seja \(f \) o endomorfismo de \(\mathbb{R}^3 \) tal que \((1, -1, 0) \) é um vetor próprio de \(f \) associado ao valor próprio 2 e

\[
f(a, b, c) = (0, 0, 0), \quad \forall (a, b, c) \in F .
\]