

The Definitive Guide
to Grails
Second Edition

■ ■ ■

Graeme Rocher and Jeff Brown

The Definitive Guide to Grails, Second Edition

Copyright © 2009 by Graeme Rocher, Jeff Brown

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-995-2

ISBN-10 (pbk): 1-59059-995-0

ISBN-13 (electronic): 978-1-4302-0871-6

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Steve Anglin, Tom Welsh
Technical Reviewer: Guillaume Laforge
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary

Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editors: Nina Goldschlager, Kim Wimpsett
Associate Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Pat Christenson
Proofreader: Kim Burton
Indexer: Becky Hornyak
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

To Birjinia, the love and support you have given me in the last few years will stay with me
forever. Unquestionably yours. Maite zaitut.

—Graeme Rocher

To Betsy, Jake, and Zack, the best team ever.
—Jeff Brown

v

Contents at a Glance

About the Authors . xix

About the Technical Reviewer . xxi

Acknowledgments . xxiii

Introduction . xxv

■CHAPTER 1 The Essence of Grails . 1

■CHAPTER 2 Getting Started with Grails. 17

■CHAPTER 3 Understanding Domain Classes . 45

■CHAPTER 4 Understanding Controllers . 65

■CHAPTER 5 Understanding Views . 107

■CHAPTER 6 Mapping URLs . 143

■CHAPTER 7 Internationalization . 159

■CHAPTER 8 Ajax . 171

■CHAPTER 9 Creating Web Flows . 199

■CHAPTER 10 GORM . 249

■CHAPTER 11 Services. 289

■CHAPTER 12 Integrating Grails . 305

■CHAPTER 13 Plugins . 367

■CHAPTER 14 Security . 407

■CHAPTER 15 Web Services . 449

■CHAPTER 16 Leveraging Spring . 487

■CHAPTER 17 Legacy Integration with Hibernate . 519

■APPENDIX The Groovy Language . 545

■INDEX . 571

vii

Contents

About the Authors . xix

About the Technical Reviewer. xxi

Acknowledgments. xxiii

Introduction . xxv

■CHAPTER 1 The Essence of Grails . 1

Simplicity and Power . 2

Grails, the Platform. 4

Living in the Java Ecosystem . 4

Getting Started . 5

Creating Your First Application . 7

Step 1: Creating the Application . 7

Step 2: Creating a Controller . 8

Step 3: Printing a Message . 10

Step 4: Testing the Code . 10

Step 5: Running the Tests . 12

Step 6: Running the Application . 13

Summary . 15

■CHAPTER 2 Getting Started with Grails . 17

What Is Scaffolding? . 17

Creating a Domain . 17

Dynamic Scaffolding . 19

The Create Operation . 21

The Read Operation . 23

The Update Operation. 25

The Delete Operation . 26

Static Scaffolding . 27

Generating a Controller . 27

Generating the Views . 32

Being Environmentally Friendly . 33

viii ■C O N T E N T S

Configuring Data Sources . 34

The DataSource.groovy File. 35

Configuring a MySQL Database . 37

Configuring a JNDI Data Source . 39

Supported Databases . 39

Deploying the Application . 41

Deployment with run-war . 41

Deployment with a WAR file . 41

Summary . 42

■CHAPTER 3 Understanding Domain Classes . 45

Persisting Fields to the Database. 45

Validating Domain Classes . 46

Using Custom Validators . 49

Understanding Transient Properties . 50

Customizing Your Database Mapping . 51

Building Relationships . 53

Extending Classes with Inheritance. 56

Embedding Objects . 59

Testing Domain Classes . 60

Summary . 63

■CHAPTER 4 Understanding Controllers . 65

Defining Controllers . 65

Setting the Default Action . 66

Logging . 67

Logging Exceptions. 68

Accessing Request Attributes . 68

Using Controller Scopes . 70

Understanding Flash Scope . 71

Accessing Request Parameters . 73

Rendering Text. 73

Redirecting a Request . 73

Creating a Model. 75

■C O N T E N T S ix

Rendering a View . 76

Finding the Default View . 76

Selecting a Custom View . 76

Rendering Templates . 77

Performing Data Binding . 77

Validating Incoming Data . 78

The Errors API and Controllers . 79

Data Binding to Multiple Domain Objects . 80

Data Binding with the bindData Method . 80

Data Binding and Associations . 81

Working with Command Objects . 82

Defining Command Objects. 82

Using Command Objects . 83

Imposing HTTP Method Restrictions . 85

Implementing an Imperative Solution . 85

Taking Advantage of a Declarative Syntax . 85

Controller IO. 86

Handling File Uploads . 86

Reading the Request InputStream . 89

Writing a Binary Response. 89

Using Simple Interceptors . 90

Before Advice . 90

After Advice . 91

Testing Controllers . 91

Controllers in Action . 93

Creating the gTunes Home Page . 94

Adding the User Domain Class . 95

Adding a Login Form. 96

Implementing Registration. 97

Testing the Registration Code . 100

Allowing Users to Log In. 102

Testing the Login Process . 104

Summary . 106

x ■C O N T E N T S

■CHAPTER 5 Understanding Views . 107

The Basics . 107

Understanding the Model. 108

Page Directives . 109

Groovy Scriptlets . 109

GSP as GStrings. 110

Built-in Grails Tags . 111

Setting Variables with Tags . 111

Logical Tags . 112

Iterative Tags . 113

Filtering and Iteration . 114

Grails Dynamic Tags . 116

Linking Tags. 117

Creating Forms and Fields. 119

Validation and Error Handling . 123

Paginating Views . 125

Rendering GSP Templates . 132

Creating Custom Tags . 136

Creating a Tag Library . 137

Custom Tag Basics . 138

Testing a Custom Tag. 139

Summary . 141

■CHAPTER 6 Mapping URLs . 143

Understanding the Default URL Mapping . 143

Including Static Text in a URL Mapping . 144

Removing the Controller and Action Names from the URL 145

Embedding Parameters in a Mapping . 145

Specifying Additional Parameters . 147

Mapping to a View . 148

Applying Constraints to URL Mappings. 149

Including Wildcards in a Mapping . 150

Mapping to HTTP Request Methods . 151

Mapping HTTP Response Codes . 153

Taking Advantage of Reverse URL Mapping . 154

Defining Multiple URL Mappings Classes . 155

Testing URL Mappings. 155

Summary . 158

■C O N T E N T S xi

■CHAPTER 7 Internationalization. 159

Localizing Messages . 159

Defining User Messages . 159

Retrieving Message Values . 161

Using URL Mappings for Internationalization 163

Using Parameterized Messages . 164

Using java.text.MessageFormat . 164

Using the message Tag for Parameterized Messages 165

Using Parameterized Messages for Validation 166

Using messageSource . 168

Summary . 170

■CHAPTER 8 Ajax . 171

The Basics of Ajax . 171

Ajax in Action. 173

Changing Your Ajax Provider . 174

Asynchronous Form Submission . 175

Executing Code Before and After a Call . 177

Handling Events . 178

Fun with Ajax Remote Linking . 179

Adding Effects and Animation . 193

Ajax-Enabled Form Fields . 193

A Note on Ajax and Performance . 197

Summary . 198

■CHAPTER 9 Creating Web Flows . 199

Getting Started with Flows . 200

Defining a Flow . 200

Defining the Start State . 200

Defining End States . 201

Action States and View States . 202

Flow Scopes. 204

Flows, Serialization, and Flow Storage . 204

Triggering Events from the View . 205

Transition Actions and Form Validation . 206

Subflows and Conversation Scope. 206

xii ■C O N T E N T S

Flows in Action . 208

Updating the Domain . 209

Updating the View . 211

Defining the Flow . 212

Adding a Start State . 212

Implementing the First View State . 216

Data Binding and Validation in Action . 218

Action States in Action . 222

Reusing Actions with Closures . 227

Using Command Objects with Flows . 231

Dynamic Transitions . 235

Verifying Flow State with Assertions . 236

Testing Flows. 244

Summary . 247

■CHAPTER 10 GORM . 249

Persistence Basics . 249

Reading Objects . 249

Listing, Sorting, and Counting. 250

Saving, Updating, and Deleting. 251

Associations. 252

Relationship Management Methods. 253

Transitive Persistence . 254

Querying . 254

Dynamic Finders . 255

Criteria Queries . 257

Query by Example . 261

HQL and SQL . 261

Pagination. 262

Configuring GORM . 263

SQL Logging. 264

Specifying a Custom Dialect . 264

Other Hibernate Properties . 265

■C O N T E N T S xiii

The Semantics of GORM . 265

The Hibernate Session . 266

Session Management and Flushing . 267

Obtaining the Session. 268

Automatic Session Flushing . 270

Transactions in GORM . 272

Detached Objects . 274

The Persistence Life Cycle. 274

Reattaching Detached Objects . 276

Merging Changes . 277

Performance Tuning GORM . 278

Eager vs. Lazy Associations . 278

Batch Fetching. 281

Caching . 282

Inheritance Strategies . 285

Locking Strategies . 285

Events Auto Time Stamping . 287

Summary . 288

■CHAPTER 11 Services . 289

Service Basics . 289

Services and Dependency Injection. 291

Services in Action . 291

Defining a Service . 293

Using a Service . 294

Transactions . 295

Scoping Services . 297

Testing Services . 298

Exposing Services. 298

Summary . 304

xiv ■C O N T E N T S

■CHAPTER 12 Integrating Grails . 305

Grails and Configuration . 305

Configuration Basics. 305

Environment-Specific Configuration . 306

Configuring Logging . 306

Stack Trace Filtering. 309

Externalized Configuration. 310

Understanding Grails’ Build System . 310

Creating Gant Scripts . 312

Command-Line Variables. 313

Parsing Command-Line Arguments . 314

Documenting Your Scripts . 315

Reusing More of Grails . 316

Bootstrapping Grails from the Command Line 317

Gant in Action. 317

Integration with Apache Ant . 325

Dependency Resolution with Ivy . 327

Code Coverage with Cobertura. 330

Continuous Integration with Hudson . 331

Adding Support to Your Favorite IDE . 335

IntelliJ . 336

NetBeans . 337

Eclipse. 338

TextMate. 342

Remote Debugging with an IDE . 344

Integration with E-mail Servers . 345

Scheduling Jobs . 349

Installing the Quartz Plugin . 349

Simple Jobs . 350

Cron Jobs . 351

Interacting with the Scheduler . 354

Scheduling Jobs . 354

Pausing and Resuming Jobs . 355

Triggering a Job . 355

Adding and Removing Jobs. 355

Jobs in Action . 356

■C O N T E N T S xv

Deployment . 361

Deploying with Grails . 361

Deploying to a Container . 361

Application Versioning and Metadata . 362

Customizing the WAR . 363

Populating the Database with BootStrap Classes 364

Summary . 365

■CHAPTER 13 Plugins . 367

Plugin Basics . 367

Plugin Discovery . 367

Plugin Installation . 369

Local Plugins . 370

Creating Plugins . 370

Providing Plugin Metadata. 371

Supplying Application Artefacts . 373

Plugin Hooks . 374

Plugin Variables . 375

Custom Artefact Types . 376

Providing Spring Beans . 379

Dynamic Spring Beans Using Conventions . 382

Using Metaprogramming to Enhance Behavior 383

Plugin Events and Application Reloading . 385

Modifying the Generated WAR Descriptor. 388

Packaging and Distributing a Grails Plugin. 389

Local Plugin Repositories. 390

Plugins in Action . 391

Plugins to Add Behavior . 391

Plugins for Application Modularity . 397

Summary . 406

■CHAPTER 14 Security . 407

Securing Against Attacks . 407

SQL or HQL Injection. 407

Groovy Injection . 409

Cross-Site Scripting (XSS) . 409

XSS and URL Escaping. 411

Denial of Service (DoS). 412

Batch Data Binding Vulnerability . 413

xvi ■C O N T E N T S

Using Dynamic Codecs . 414

Authentication and Authorization . 416

Grails Filters. 417

The JSecurity Plugin . 419

Authentication Realms . 419

Subjects and Principals . 420

Roles and Permissions . 421

JSecurity in Action . 421

Limiting Access Through URL Mappings . 446

Summary . 448

■CHAPTER 15 Web Services . 449

REST . 450

RESTful URL Mappings. 450

Content Negotiation . 452

Content Negotiation with the ACCEPT Header 452

The ACCEPT Header and Older Browsers . 456

Content Negotiation with the CONTENT_TYPE Header 457

Content Negotiation Using File Extensions . 458

Content Negotiation with a Request Parameter 459

Content Negotiation and the View . 459

Marshaling Objects to XML . 460

Marshaling Objects to JSON . 463

Unmarshaling XML or JSON . 466

REST and Security. 472

Atom and RSS . 473

Creating RSS and Atom Feeds . 473

RSS and Atom Link Discovery. 476

SOAP . 478

SOAP Web Services via Plugins . 479

Calling SOAP from the Client. 482

Summary . 485

■CHAPTER 16 Leveraging Spring . 487

Spring Basics. 487

Spring and Grails . 489

Dependency Injection and Grails . 489

The BeanBuilder DSL . 490

■C O N T E N T S xvii

Spring in Action. 498

Integrating JMS with Spring JMS. 498

Mixing Groovy and Java with Spring . 513

Summary . 516

■CHAPTER 17 Legacy Integration with Hibernate . 519

Legacy Mapping with the ORM DSL . 519

Changing Table and Column Name Mappings 520

Changing Association Mappings. 521

Understanding Hibernate Types . 524

Changing the Database Identity Generator . 529

Using Composite Identifiers. 531

Mapping with Hibernate XML . 532

EJB 3–Compliant Mapping . 535

Using Constraints with POJO Entities . 541

Summary . 543

■APPENDIX The Groovy Language . 545

Groovy and Java: A Comparison . 545

What’s the Same?. 546

What’s Different? . 546

The Basics . 547

Declaring Classes . 548

Language-Level Assertions . 548

Groovy Strings . 549

Closures . 552

Lists, Maps, and Ranges . 553

Expando Objects . 555

Ranges . 556

Groovy Power Features . 557

Everything Is an Object. 557

Metaprogramming . 561

Understanding Builders . 567

Summary . 569

■INDEX . 571

xix

About the Authors

■GRAEME KEITH ROCHER is a software engineer and head of Grails devel-
opment at SpringSource (http://www.springsource.com), the company
behind the Spring Framework that underpins Grails. In his current
role, Graeme leads the ongoing development of the Grails framework,
driving product strategy and innovation for the Grails framework.

Graeme started his career in the e-learning sector as part of a team
developing scalable enterprise learning management systems based
on Java EE technology. He later branched into the digital TV arena,
where he faced increasingly complex requirements that required an
agile approach as the ever-changing and young digital TV platforms

evolved. This is where Graeme was first exposed to Groovy and where he began combining
Groovy with Cocoon to deliver dynamic multichannel content management systems targeted
at digital TV platforms.

Seeing an increasing trend for web delivery of services and the complexity it brought,
Graeme embarked on another project to simplify it and founded Grails. Grails is a framework
with the essence of other dynamic language frameworks but is targeted at tight Java integra-
tion. Graeme is the current project lead of Grails and is a member of the Groovy JSR-241
executive committee.

Before SpringSource, Graeme cofounded G2One Inc.—The Groovy/Grails Company—
along with Guillaume Laforge (Groovy project lead) and Alex Tkachman (former JetBrains
COO). G2One provided consulting, training, and support for the Groovy and Grails technolo-
gies. In October 2008, SpringSource acquired G2One, and Graeme, along with his colleagues at
G2One, joined the number-one provider of enterprise software in the Java space. SpringSource
now provides training, support, consulting, and products for Groovy and Grails, as well as the
frameworks that underpin them such as Spring and Hibernate.

■JEFF BROWN is a software engineer at SpringSource and a member of
the Groovy and Grails development teams. Jeff has been involved with
software engineering since the early 1990s and has designed and built
systems for industries including financial, biomedical, aerospace, and
others.

Jeff began his software engineering career building business sys-
tems in C and C++ targeting the Unix, OS/2, and Windows platforms.
As soon as the Java language came along, he realized that it was going
to be a very important technology moving forward. At this point, Jeff
joined Object Computing Inc. (http://www.ociweb.com/) based in St.

Louis, Missouri, where he spent the next 11 years building systems for the Java platform, coach-
ing and mentoring developers, developing and delivering training, and evangelizing.

xx ■A B O U T T H E A U T H O R S

While fully appreciating the power and flexibility offered by the Java platform, Jeff was
frustrated with the unnecessary complexity often associated with Java applications. In particu-
lar, web application development with Java seemed to have a ridiculous amount of complexity
that really had nothing at all to do with the real problems solved by the application. Jeff discov-
ered the Grails framework soon after Graeme founded the project. Here were the beginnings of
a solution that made so much more sense in so many ways. After digging in to the source code
of the project, Jeff began making contributions and eventually became a member of the Grails
development team.

Jeff eventually joined the team at G2One Inc.—The Groovy/Grails Company—where he
would help drive the professional services side of the business. In late 2008, Jeff joined Spring-
Source when G2One and SpringSource came together to leverage synergies between the
technologies created and supported by each company.

Through his entire career Jeff has always been a hands-on technologist actively involved in
software development, training, and mentoring. He is also an international public speaker,
having been featured regularly on the No Fluff Just Stuff Software Symposium tour (http://
www.nofluffjuststuff.com/) for a number of years.

xxi

About the Technical Reviewer

■GUILLAUME LAFORGE is the Groovy project manager and the spec lead
of JSR-241, the Java specification request standardizing the Groovy
dynamic language. He coauthored Manning’s best-seller Groovy in
Action.

Along with Graeme Rocher, he founded G2One Inc., the Groovy/
Grails company dedicated to sustaining and leading the development
of both Groovy and Grails and providing professional services (exper-
tise, consulting, support, and training) around those technologies. In
November 2008, SpringSource acquired G2One, and now Groovy and
Grails bring additional weapons to the SpringSource portfolio to fight

the war on enterprise Java complexity.
You can meet Guillaume at conferences around the world where he evangelizes the Groovy

dynamic language, domain-specific languages in Groovy, and the agile Grails web framework.

xxiii

Acknowledgments

First and foremost, I’d like to thank my wife, Birjinia, for her beauty, wisdom, and continued
love and support. Over the last few years you have given me your total support and made sacri-
fices to the cause that I will value forever. Te quiero. Also, to my kids, Alex and Lexeia, who
provide little pockets of inspiration to me every day, and to all of my and Birjinia’s family,
thanks for your support and encouragement.

Also, thanks to everyone at Apress that I have worked with from Steve Anglin and Tom
Welsh to the people on the production team such as Nina Goldschlager and Kim Wimpsett (my
copy editors), Laura Cheu (production editor), and, in particular, Kylie Johnston (project man-
ager) for keeping the whole thing on track.

To Peter Ledbrook whose insight and contributions have been unbelievably valuable to the
community and me. To Marc Palmer for providing a voice of reason, intelligent debate, and
continued valuable contribution to Grails. To Alex Tkachman for his inspirational leadership at
G2One and continued friendship. To the core members of the Groovy team, such as Guillaume
Laforge and Jochen “blackdrag” Theodorou, whose continued responsiveness makes Grails’
existence possible.

Also, without the support of the Grails community in general, we wouldn’t have gotten very
far. So, thanks to all the Grails users, in particular to Sven Haiges and Glen Smith for producing
the Grails podcast and screencasts and to all the plugin developers who make Grails a thriving
hive of activity.

Last, but most certainly not least, thanks to Rod Johnson, Adrian Coyler, Peter Cooper-Ellis,
and everyone at SpringSource for seeing the potential of Grails and granting me the privilege of
working for a fantastic company.

Graeme Rocher

I have to start by thanking my lovely wife, Betsy, and our unbelievable boys, Zack and Jake.
Thank you all for putting up with me being closed behind the door of my home office many eve-
nings as I worked on this book. You are all the absolute best!

Thanks to Graeme for his support as we worked through this project. It has been a lot of
hard work and a whole lot of fun.

I owe a great debt to Alex Tkachman, Graeme Rocher, and Guillaume Laforge. G2One was
absolutely the most exciting, challenging, and rewarding professional experience I have ever
been involved with. It truly is an honor and a pleasure to know and work with you guys.

Thanks to Matt Taylor for all of the great work we have done together starting back at OCI,
then G2One, and now SpringSource.

For more than a decade of professional accomplishments, I have to thank all my friends at
OCI. I especially want to thank my friend Dr. Ebrahim Moshiri for the great opportunities and
years of support. Thank you, sir. Also, I thank Mario Aquino. There are so many folks at OCI who

xxiv ■A C K N O W L E D G M E N T S

I enjoyed working with and continue to enjoy a friendship with, none of them more than Mario.
Thanks for everything, man. The next one is on me.

Thanks to the whole team at Apress. I appreciate all of your hard work and patience.
Thanks to Kylie Johnston (project manager) for helping us navigate through the whole thing.

I also have to thank Rod Johnson and the whole team at SpringSource. We have a lot of
really exciting stuff ahead of us, and I truly look forward to it.

Jeff Brown

xxv

Introduction

In the late ’90s I was working on a project developing large-scale enterprise learning manage-
ment systems using early J2EE technologies such as EJB 1.0 and the Servlet framework. The Java
hype machine was in full swing, and references to “EJB that, and Java this” were on the cover of
every major IT publication.

Even though what we were doing—and learning as we did it—felt so horribly wrong, the
industry kept telling us we were doing the right thing. EJB was going to solve all our problems,
and servlets (even without a view technology at the time) were the right thing to use. My, how
times have changed.

Nowadays, Java and J2EE are long-forgotten buzzwords, and the hype machine is throwing
other complex acronyms at us such as SOA and ESB. In my experience, developers are on a con-
tinued mission to write less code. The monolithic J2EE specifications, like those adopted by the
development community in the early days, didn’t help. If a framework or a specification is overly
complex and requires you to write reams of repetitive code, it should be an immediate big red
flag. Why did we have to write so much repetitive boilerplate code? Surely there was a better way.

In the end, developers often influence the direction of technology more than they know. Why
do so many developers favor REST over SOAP for web services? Or Hibernate over EJB for persis-
tence? Or Spring over JNDI for Inversion of Control? In the end, simplicity often wins the day.

Certainly, working with Spring and Hibernate feels a lot better than traditional J2EE
approaches; in fact, I strove to use them whenever possible, usually in combination with Web-
Work, and delivered a number of successful projects with this stack. Nevertheless, I still felt I
had to deal with the surrounding infrastructural issues and configuration, rather than the prob-
lem at hand. After all, the more efficient I could be as a developer when doing “real” work, the
more time I would have to do what should be driving every developer: spending time with loved
ones and learning new and exciting technologies.

In 2003, Groovy entered the picture. I had always been fond of looser rules governing
dynamic languages in certain contexts, having worked extensively with Perl, Visual Basic, and
JavaScript in the past, and after quickly hacking the WebWork source code, I was able to write
MVC controllers (or actions in WebWork lingo) with Groovy in no time.

Groovy was perfect for controllers whose sole responsibility should be to delegate to busi-
ness logic implemented by a service and then display an appropriate view. I was starting to
have even more time for the good things in life. Then came the storm of dynamic language–
based frameworks led by Ruby on Rails.

Unfortunately, it was all a little late. Java, the community, the tools, the frameworks, and
the mind share are well-embedded. The size that Java has grown to is quite staggering, and hav-
ing been in the training business for many years, I see it showing no signs of slowing, contrary
to popular belief. Still, Java has its problems, and I wanted to write less code. Grails was born
with this goal in mind in the summer of 2005 after I, Steven Devijver, and Guillaume Laforge
kicked off a discussion about its conception on the Groovy mailing list.

Fundamentally, there is nothing at all wrong with many of the specifications that form part
of J2EE. They are, however, at a rather low level of abstraction. Frameworks such as Struts,

xxvi ■I N T R O D U C T I O N

WebWork, and more recently JSF have tried to resolve this issue; however, Java and its static
typing don’t help. Groovy, on the other hand, allows that higher level of abstraction. Having
used it for controllers, it was now time to take it to every layer—from controllers to tag libraries
and from persistence to the view technology.

The APIs you can create with Groovy’s metaprogramming support are amazingly simple
and concise. Grails uses every single dynamic trick, at both runtime and compile time, from
custom domain-specific languages to compile-time mixins, with two fundamental goals in
mind: write less code and be Java friendly.

Are Groovy and Grails a replacement for Java, like other dynamic language frameworks?
No, on the contrary, they’re designed to work with Java. To embrace it. To have Java at their
very core. Grails is Java through and through, and it allows you to pick and choose which fea-
tures to implement with dynamic typing and which to entrust to the safer hands of static
typing.

Grails was born from the realization that there is never only just one tool for the job. Grails
is about providing an entry point for the trivial tasks, while still allowing the power and flexibil-
ity to harness the full Java platform when needed. I hope you enjoy the book as much as I have
enjoyed writing it and being part of the Grails community.

—Graeme Rocher

Who This Book Is For
Grails forms just one framework that is driving the movement toward dynamic language–based
frameworks. In this sense, anyone who is interested in dynamic languages, whether Perl, Ruby,
or Python, will gain something from reading this book, if just to acquire insight into what the
alternatives are.

If platform is not a choice and Java is the way your project is going, Grails can provide
features like no other framework. In this circumstance, Grails may have the answers you are
looking for. Primarily, however, this book will be of most benefit to those who know and love
the Java platform—those who appreciate the Java language for all its strong points but want
something better as a web framework.

Grails is providing the answers to the long search for something better in the Java world by
presenting a framework that solves the common problems in an unobtrusive, elegant manner.
But this does not mean that the subject matter of this book is trivial. We’ll be challenging you
with advanced usages of the Groovy language and real-world examples.

Furthermore, you’ll be pushing the boundaries of what is possible with a dynamic lan-
guage like Groovy, extending it into every tier of a typical web application from the view layer
with Ajax-enabled technology to the persistence tier with rich domain models. For experienced
Java developers, it should be an enlightening experience, because we’ll explore features not
found in Java such as closures, builders, and metaprogramming.

Through all this, however, although the subject matter and examples are advanced, the
solutions are simple, and along the way you may learn a new way to approach web application
development.

■I N T R O D U C T I O N xxvii

How This Book Is Structured
This book is divided into 17 chapters and one appendix. Unlike the first edition, coverage of
Groovy is saved for the appendix. If you have no experience using Groovy, then it is recom-
mended that you read the appendix first as the chapters themselves dive straight into Grails
starting with Chapter 1, which covers the basic philosophy behind Grails.

In Chapter 2 we take you through a kick-start, demonstrating how you can quickly get
productive with Grails. Then from Chapter 3 onward we delve into detailed coverage of each
concept within Grails from domain classes in Chapter 3 to views in Chapter 5. By this point, you
should have a good understanding of the basics.

The book will then dive straight into the nitty-gritty details of Grails in Chapter 6 with cov-
erage of URL mappings, followed by the multilingual experience that is internationalization in
Chapter 7. If you haven’t had enough excitement by this point, then Chapter 8 should solve that
with coverage of Grails’ support for adaptive Ajax.

In Chapter 9 the book will begin to cover some of the more advanced features of Grails star-
ing with Web Flow. In Chapter 10 you’ll get a much better understanding of how GORM works,
while in Chapter 11 you’ll learn how to leverage declarative transactions with Grails services.

Chapter 12 goes into a lot of detail on how you can integrate Grails into your existing eco-
system; then in Chapter 13 you will get to become a Grails plugin developer as you explore the
features offered by Grails’ plugin system. Security is the focal point for Chapter 14, while in
Chapter 15 we’ll cover publishing web services with Grails.

Finally, Chapter 16 and Chapter 17 are dedicated to the more advanced topics of integrat-
ing Grails with the underlying Spring and Hibernate frameworks.

Conventions
This book uses a diverse range of languages, including HTML, XML, JavaScript, Groovy, and
Java. Nonetheless, each example is introduced appropriately and appears in a fixed-width
Courier font. We have also endeavored to be consistent in the use of naming conventions
throughout the book, making the examples as clear as possible.

In many cases, the original source code has been reformatted to fit within the available
page space, with additional line breaks and modified code indentation being common. To
increase the clarity of the code, some examples omit code where it is seen as unnecessary. In
cases where the code is omitted between two blocks of code, an ellipsis (…) is used to indicate
where the missing code would have been.

Prerequisites
This book shows you how to install Grails; in the examples, we use the 1.1 release. As of this
writing, the 1.1 release was not quite final, but by the time of publication, Grails 1.1 should be
final (or nearly so). However, Grails itself is dependent on the existence of an installed Java Vir-
tual Machine. As a minimum, you will need to install JDK 1.5 or newer for the examples in this
book to work.

xxviii ■I N T R O D U C T I O N

Installing an application server, such as Tomcat, and a database server, such as MySQL, is
entirely optional, because Grails comes bundled with an embedded server and database. Nev-
ertheless, to use Grails in production, you may at least want to set up a database server.

Downloading the Code
The code for the examples in this book is available in the Source Code section of the Apress web
site at http://www.apress.com. Chapter-by-chapter source code is also available in the Code-
haus Subversion repository at http://svn.codehaus.org/grails/trunk/samples/dgg.

Contacting the Authors
Graeme is an active member of the open source community and welcomes any com-
ments and/or communication. You can reach him via e-mail at graeme.rocher@gmail.com
or via his blog at http://graemerocher.blogspot.com. You can reach Jeff via e-mail at
jeff@jeffandbetsy.net or via his blog at http://javajeff.blogspot.com. Alternatively, you
can simply pop a message on the Grails mailing lists, the details for which can be found here:
http://grails.org/Mailing+lists.

1

■ ■ ■

C H A P T E R 1

The Essence of Grails

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

To understand Grails, you first need to understand its goal: to dramatically simplify enterprise
Java web development. To take web development to the next level of abstraction. To tap into
what has been accessible to developers on other platforms for years. To have all this but still
retain the flexibility to drop down into the underlying technologies and utilize their richness
and maturity. Simply put, we Java developers want to “have our cake and eat it too.”

Have you faced the pain of dealing with multiple, crippling XML configuration files and an
agonizing build system where testing a single change takes minutes instead of seconds? Grails
brings back the fun of development on the Java platform, removing barriers and exposing users
to APIs that enable them to focus purely on the business problem at hand. No configuration,
zero overhead, immediate turnaround.

You might be wondering how you can achieve this remarkable feat. Grails embraces con-
cepts such as Convention over Configuration (CoC), Don’t Repeat Yourself (DRY), and sensible
defaults that are enabled through the terse Groovy language and an array of domain-specific
languages (DSLs) that make your life easier.

As a budding Grails developer, you might think you’re cheating somehow, that you should
be experiencing more pain. After all, you can’t squash a two-hour gym workout into twenty
minutes, can you? There must be payback somewhere, maybe in extra pounds?

As a developer you have the assurance that you are standing on the shoulders of giants
with the technologies that underpin Grails: Spring, Hibernate, and, of course, the Java plat-
form. Grails takes the best of dynamic language frameworks like Ruby on Rails, Django, and
TurboGears and brings them to a Java Virtual Machine (JVM) near you.

2 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

Simplicity and Power
A factor that clearly sets Grails apart from its competitors is evident in the design choices made
during its development. By not reinventing the wheel, and by leveraging tried and trusted
frameworks such as Spring and Hibernate, Grails can deliver features that make your life easier
without sacrificing robustness.

Grails is powered by some of the most popular open source technologies in their respec-
tive categories:

• Hibernate: The de facto standard for object-relational mapping (ORM) in the Java world

• Spring: The hugely popular open source Inversion of Control (IoC) container and wrap-
per framework for Java

• SiteMesh: A robust and stable layout-rendering framework

• Jetty: A proven, embeddable servlet container

• HSQLDB: A pure Java Relational Database Management System (RDBMS)
implementation

The concepts of ORM and IoC might seem a little alien to some readers. ORM simply
serves as a way to map objects from the object-oriented world onto tables in a relational data-
base. ORM provides an additional abstraction above SQL, allowing developers to think about
their domain model instead of getting wrapped up in reams of SQL.

IoC provides a way of “wiring” together objects so that their dependencies are available
at runtime. As an example, an object that performs persistence might require access to a
data source. IoC relieves the developer of the responsibility of obtaining a reference to the data
source. But don’t get too wrapped up in these concepts for the moment, as their usage will
become clear later in the book.

You benefit from Grails because it wraps these frameworks by introducing another layer of
abstraction via the Groovy language. You, as a developer, will not know that you are building a
Spring and Hibernate application. Certainly, you won’t need to touch a single line of Hibernate
or Spring XML, but it is there at your fingertips if you need it. Figure 1-1 illustrates how Grails
relates to these frameworks and the enterprise Java stack.

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 3

Figure 1-1. The Grails stack

Grails, the Platform
When approaching Grails, you might suddenly experience a deep inhalation of breath followed
by an outcry of “not another web framework!?” That’s understandable, given the dozens of web
frameworks that exist for Java. But Grails is different, and in a good way. Grails is a full-stack
environment, not just a web framework. It is a platform with ambitious aims to handle every-
thing from the view layer down to your persistence concerns.

In addition, through its plugins system (covered in Chapter 13), Grails aims to provide
solutions to an extended set of problems that might not be covered out of the box. With Grails
you can accomplish searching, job scheduling, enterprise messaging and remoting, and more.

The sheer breadth of Grails’ coverage might conjure up unknown horrors and nightmarish
thoughts of configuration, configuration, configuration. However, even in its plugins, Grails
embraces Convention over Configuration and sensible defaults to minimize the work required
to get up and running.

We encourage you to think of Grails as not just another web framework, but the platform
upon which you plan to build your next web 2.0 phenomenon.

4 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

Living in the Java Ecosystem
As well as leveraging Java frameworks that you know and love, Grails gives you a platform that
allows you to take full advantage of Java and the JVM—thanks to Groovy. No other dynamic
language on the JVM integrates with Java like Groovy. Groovy is designed to work seamlessly
with Java at every level. Starting with syntax, the similarities continue:

• The Groovy grammar is derived from the Java 5 grammar, making most valid Java code
also valid Groovy code.

• Groovy shares the same underlying APIs as Java, so your trusty javadocs are still valid!

• Groovy objects are Java objects. This has powerful implications that might not be immedi-
ately apparent. For example, a Groovy object can implement java.io.Serializable and be
sent over Remote Method Invocation (RMI) or clustered using session-replication tools.

• Through Groovy’s joint compiler you can have circular references between Groovy and
Java without running into compilation issues.

• With Groovy you can easily use the same profiling tools, the same monitoring tools, and
all existing and future Java technologies.

Groovy’s ability to integrate seamlessly with Java, along with its Java-like syntax, is the
number-one reason why so much hype was generated around its conception. Here we had a
language with similar capabilities to languages such as Ruby and Smalltalk running directly
in the JVM. The potential is obvious, and the ability to intermingle Java code with dynamic
Groovy code is huge. In addition, Groovy allows you to mix static types and dynamic types,
combining the safety of static typing with the power and flexibility to use dynamic typing
where necessary.

This level of Java integration is what drives Groovy’s continued popularity, particularly
in the world of web applications. Across different programming platforms, varying idioms
essentially express the same concept. In the Java world we have servlets, filters, tag libraries,
and JavaServer Pages (JSP). Moving to a new platform requires relearning all of these con-
cepts and their equivalent APIs or idioms—easy for some, a challenge for others. Not that
learning new things is bad, but a cost is attached to knowledge gain in the real world, which
can present a major stumbling block in the adoption of any new technology that deviates
from the standards or conventions defined within the Java platform and the enterprise.

In addition, Java has standards for deployment, management, security, naming, and
more. The goal of Grails is to create a platform with the essence of frameworks like Rails or
Django or CakePHP, but one that embraces the mature environment of Java Enterprise Edition
(Java EE) and its associated APIs.

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 5

Grails is, however, one of these technologies that speaks for itself: the moment you experi-
ence using it, a little light bulb will go on inside your head. So without delay, let’s get moving
with the example application that will flow throughout the course of this book. Whereas in this
book’s first edition we featured a social-bookmarking application modeled on the del.icio.us
service, in this edition we’ll illustrate an entirely new type of application: gTunes.

Our gTunes example will guide you through the development of a music store similar to
those provided by Apple, Amazon, and Napster. An application of this nature opens up a wide
variety of interesting possibilities from e-commerce to RESTful APIs and RSS or Atom feeds.
We hope it will give you a broad understanding of Grails and its feature set.

Getting Started
Grails’ installation is almost as simple as its usage, but you must take into account at least one
prerequisite. Grails requires a valid installation of the Java SDK 1.5 or above which, of course,
you can obtain from Sun Microsystems at http://java.sun.com.

After installing the Java SDK, set the JAVA_HOME environment variable to the location where
you installed it and add the JAVA_HOME/bin directory to your PATH variables.

■Note If you are working on Mac OS X, you already have Java installed! However, you still need to set
JAVA_HOME in your ~/.profile file.

To test your installation, open up a command prompt and type java -version:

$java -version

You should see output similar to Listing 1-1.

Listing 1-1. Running the Java Executable

java version "1.5.0_13"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_13-b05-237)
Java HotSpot(TM) Client VM (build 1.5.0_13-119, mixed mode, sharing)

As is typical with many other Java frameworks such as Apache Tomcat and Apache Ant,
the installation process involves following a few simple steps. Download and unzip Grails
from http://grails.org, create a GRAILS_HOME variable that points to the location where
you installed Grails, and add the GRAILS_HOME/bin directory to your PATH variable.

6 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

To validate your installation, open a command window and type the command grails:

$ grails

If you have successfully installed Grails, the command will output the usage help shown in
Listing 1-2.

Listing 1-2. Running the Grails Executable

Welcome to Grails 1.1 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /Developer/grails-1.1

No script name specified. Use 'grails help' for more info or 'grails interactive' to

enter interactive mode

As suggested by the output in Listing 1-2, typing grails help will display more usage
information including a list of available commands. If more information about a particular
command is needed, you can append the command name to the help command. For exam-
ple, if you want to know more about the create-app command, simply type grails help
create-app:

$ grails help create-app

Listing 1-3 provides an example of the typical output.

Listing 1-3. Getting Help on a Command

Usage (optionals marked with *):
grails [environment]* create-app

grails create-app -- Creates a Grails project, including the necessary
directory structure and common files

Grails’ command-line interface is built on another Groovy-based project called
Gant (http://gant.codehaus.org/), which wraps the ever-popular Apache Ant
(http://ant.apache.org/) build system. Gant allows seamless mixing of Ant targets
and Groovy code.

We’ll discuss the Grails command line further in Chapter 12.

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 7

Creating Your First Application
In this section you’re going to create your first Grails application, which will include a simple
controller. Here are the steps you’ll take to achieve this:

1. Run the command grails create-app gTunes to create the application (with “gTunes”
being the application’s name).

2. Navigate into the gTunes directory by issuing the command cd gTunes.

3. Create a storefront controller with the command grails create-controller store.

4. Write some code to display a welcome message to the user.

5. Test your code and run the tests with grails test-app.

6. Run the application with grails run-app.

Step 1: Creating the Application
Sound easy? It is, and your first port of call is the create-app command, which you managed to
extract some help on in the previous section. To run the command, simply type grails create-
app and hit Enter in the command window:

$ grails create-app

Grails will automatically prompt you for a project name as presented in Listing 1-4. When
this happens, type gTunes and hit Enter. As an alternative, you could use the command grails
create-app gTunes, in which cases Grails takes the appropriate action automatically.

Listing 1-4. Creating an Application with the create-app Command

Running script /Developer/grails-dev/GRAILS_1_1/scripts/CreateApp.groovy
Environment set to development
Application name not specified. Please enter: gTunes

Upon completion, the command will have created the gTunes Grails application and the
necessary directory structure. The next step is to navigate to the newly created application in
the command window using the shell command:

cd gTunes

At this point you have a clean slate—a newly created Grails application—with the default
settings in place. A screenshot of the structure of a Grails application appears in Figure 1-2.

We will delve deeper into the structure of a Grails application and the roles of the various
files and directories as we progress through the book. You will notice, however, how Grails con-
tains directories for controllers, domain objects (models), and views.

8 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

Figure 1-2. The gTunes application structure

Step 2: Creating a Controller
Grails is an MVC1 framework, which means it has models, views, and controllers to separate
concerns cleanly. Controllers, which are central to a Grails application, can easily marshal
requests, deliver responses, and delegate to views. Because the gTunes application centers
around the concept of a music store, we’ll show you how to create a “store” controller.

To help you along the way, Grails features an array of helper commands for creating
classes that “fit” into the various slots in a Grails application. For example, for controllers you
have the create-controller command, which will do nicely. But using these commands is not
mandatory. As you grow more familiar with the different concepts in Grails, you can just as
easily create a controller class using your favorite text editor or integrated development envi-
ronment (IDE).

Nevertheless, let’s get going with the create-controller command, which, as with create-
app, takes an argument where you can specify the name of the controller you wish to create.
Simply type grails create-controller store:

$ grails create-controller store

Now sit back while Grails does the rest (see Listing 1-5).

1. The Model-View-Controller (MVC) pattern is a common pattern found in many web frameworks
designed to separate user interface and business logic. See Wikipedia, “Model-view-controller,”
http://en.wikipedia.org/wiki/Model-view-controller, 2003.

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 9

Listing 1-5. Creating a Controller with the create-controller Command

[copy] Copying 1 file to /Developer/grails-dev/gTunes/grails-app/controllers
Created Controller for Store
 [mkdir] Created dir: /Developer/grails-dev/gTunes/grails-app/views/store
 [copy] Copying 1 file to /Developer/grails-dev/gTunes/test/unit
Created ControllerTests for Store

Once the create-controller command has finished running, Grails will have created not
one, but two classes for you: a new controller called StoreController within the grails-app/
controllers directory, and an associated test case in the test/unit directory. Figure 1-3 shows
the newly created controller nesting nicely in the appropriate directory.

Figure 1-3. The newly created StoreController

Due to Groovy’s dynamic nature, you should aim for a high level of test coverage2 in any
Grails project (Grails assumes you’ll need a test if you’re writing a controller). Dynamic lan-
guages such as Groovy, Ruby, and Python do not give you nearly as much compile-time
assistance as statically typed languages such as Java. Some errors that you might expect to
be caught at compile time are actually left to runtime, including method resolution. Sadly, the
comfort of the compiler often encourages Java developers to forget about testing altogether.

2. Code coverage is a measure used in software testing. It describes the degree to which the source code
of a program has been tested.

10 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

 Needless to say, the compiler is not a substitute for a good suite of unit tests, and what you lose
in compile-time assistance you gain in expressivity.

Throughout this book we will be demonstrating automated-testing techniques that make
the most of Grails’ testing support.

Step 3: Printing a Message
Let’s return to the StoreController. By default, Grails will create the controller and give it a sin-
gle action called index. The index action is, by convention, the default action in the controller.
Listing 1-6 shows the StoreController containing the default index action.

Listing 1-6. The Default index Action

class StoreController {
 def index = {}
}

The index action doesn’t seem to be doing much, but by convention, its declaration
instructs Grails to try to render a view called grails-app/views/store/index.gsp automati-
cally. Views are the subject of Chapter 5, so for the sake of simplicity we’re going to try
something less ambitious instead.

Grails controllers come with a number of implicit methods, which we’ll cover in Chapter 4.
One of these is render, a multipurpose method that, among other things, can render a simple
textual response. Listing 1-7 shows how to print a simple response: “Welcome to the gTunes
store!”

Listing 1-7. Printing a Message Using the render Method

class StoreController {
 def index = {
 render "Welcome to the gTunes store!"
 }
}

Step 4: Testing the Code
The preceding code is simple enough, but even the simplest code shouldn’t go untested. Open
the StoreControllerTests test suite that was generated earlier inside the test/unit directory.
Listing 1-8 shows the contents of the StoreControllerTests suite.

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 11

Listing 1-8. The Generated StoreControllerTests Test Suite

class StoreControllerTests extends grails.test.ControllerUnitTestCase {
 void testSomething() {

 }
}

Grails separates tests into “unit” and “integration” tests. Integration tests bootstrap the
whole environment including the database and hence tend to run more slowly. In addition,
integration tests are typically designed to test the interaction among a number of classes and
therefore require a more complete application before you can run them.

Unit tests, on the other hand, are fast-running tests, but they require you to make exten-
sive use of mocks and stubs. Stubs are classes used in testing that mimic the real behavior of
methods by returning arbitrary hard-coded values. Mocks essentially do the same thing, but
exhibit a bit more intelligence by having “expectations.” For example, a mock can specify that
it “expects” a given method to be invoked at least once, or even ten times if required. As we
progress through the book, the difference between unit tests and integration tests will become
clearer.

To test the StoreController in its current state, you can assert the value of the response
that was sent to the user. A simple way of doing this appears in Listing 1-9.

Listing 1-9. Testing the StoreController’s index Action

class StoreControllerTests extends grails.test.ControllerUnitTestCase {
 void testRenderHomePage() {
 controller.index()
 assertEquals "Welcome to the gTunes store!",
 controller.response.contentAsString
 }
}

What we’re doing here is using Grails’ built-in testing capabilities to evaluate the con-
tent of the response object. During a test run, Grails magically transforms the regular servlet
HttpServletResponse object into a Spring MockHttpServletResponse, which has helper prop-
erties such as contentAsString that enable you to evaluate what happened as the result of a
call to the render method.

Nevertheless, don’t get too hung up about the ins and outs of using this code just yet. The
whole book will be littered with examples that will gradually ease you into becoming proficient
at testing with Grails.

12 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

Step 5: Running the Tests
To run the tests and verify that everything works as expected, you can use the grails test-app
command. The test-app command will execute all the tests in the application and output the
results to the test/reports directory. In addition, you can run only StoreControllerTests by
issuing the command grails test-app StoreController. Listing 1-10 shows some typical out-
put that results when you run the test-app command.

Listing 1-10. Running Tests with grails test-app

 Running 1 Unit Test...
 Running test StoreControllerTests...
 testRenderHomePage...SUCCESS
 Unit Tests Completed in 233ms

 ...
 Tests passed. View reports in /Developer/grails-dev/gTunes/test/reports

If you want to review the reports, you’ll find XML, HTML, and plain-text reports in the
test/reports directory. Figure 1-4 shows what the generated HTML reports look like in a
browser—they’re definitely easier on the eye than the XML equivalent!

Figure 1-4. Generated HTML test reports

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 13

Step 6: Running the Application
Now that you’ve tested your code, your final step is to see it in action. Do this using the grails
run-app command, which will start up a locally running Grails server on port 8080 by default.
Grails uses the popular and robust Jetty container (http://www.mortbay.org/) as the default
server, but of course you can deploy Grails onto any servlet container that’s version 2.4 or
above. (You’ll find out more about deployment in Chapter 12.)

Get Grails going by typing grails run-app into the command prompt:

$ grails run-app

You’ll notice that Grails will start up and inform you of a URL you can use to access the
Grails instance (see Listing 1-11).

Listing 1-11. Running an Application with run-app

...
2008-06-19 23:15:46.523:/gTunes:INFO: Initializing Spring FrameworkServlet 'grails'
2008-06-19 23:15:47.963::INFO: Started SelectChannelConnector@0.0.0.0:8080
Server running. Browse to http://localhost:8080/gTunes

If you get a bind error such as this one, it probably resulted from a port conflict:

Server failed to start: java.net.BindException: Address already in use

This error typically occurs if you already have another container running on port 8080,
such as Apache Tomcat (http://tomcat.apache.org). You can work around this issue by
running Grails on a different port by passing the server.port argument specifying an alter-
native value:

grails -Dserver.port=8087 run-app

In the preceding case, Grails will start up on port 8087 as expected. Barring any port con-
flicts, you should have Grails up and running and ready to serve requests at this point. Open
your favorite browser and navigate to the URL prompted by the Grails run-app command
shown in Listing 11-1. You’ll be presented with the Grails welcome page that looks something
like Figure 1-5.

The welcome screen is (by default) rendered by a Groovy Server Pages (GSP) file located at
web-app/index.gsp, but you can fully customize the location of this file through URL mappings
(discussed in Chapter 6).

As you can see in Figure 1-5, the StoreController you created earlier is one of those listed
as available. Clicking the StoreController link results in printing the “Welcome to the gTunes
store!” message you implemented earlier (see Figure 1-6).

14 C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S

Figure 1-5. The standard Grails welcome page

Figure 1-6. StoreController prints a message.

C H A P T E R 1 ■ T H E E S S E N C E O F G R A I L S 15

Summary
Success! You have your first Grails application up and running. In this chapter you’ve taken the
first steps needed to learn Grails by setting up and configuring your Grails installation. In addi-
tion, you’ve created your first Grails application, along with a basic controller.

Now it is time to see what else Grails does to kick-start your project development. In the
next section, we’ll look at some of Grails’ Create, Read, Update, Delete (CRUD) generation
facilities that allow you to flesh out prototype applications in no time.

17

■ ■ ■

C H A P T E R 2

Getting Started with Grails

In Chapter 1, you got your first introduction to the Grails framework and a feel for the basic
command-line interface while creating the basis for the gTunes application. In this chapter,
we’re going to build on that foundation by showing how you can use Grails’ scaffolding feature
to quickly build a prototype application that can generate simple CRUD (Create, Read, Update,
Delete) interfaces.

Then we’ll start to explain some of the basic concepts within the Grails ecosystem such
as environments, data sources, and deployment. Get ready—this is an action-packed chapter
with loads of information!

What Is Scaffolding?
Scaffolding is a Grails feature that allows you to quickly generate CRUD interfaces for an exist-
ing domain. It offers several benefits, the most significant of which is that it serves as a superb
learning tool, allowing you to relate how Grails’ controller and view layers interact with the
domain model that you created.

You should note, however, that Grails is not just a CRUD framework. And scaffolding,
although a useful feature in your repertoire, is not Grails’ main benefit. If you’re looking for
a framework that provides purely CRUD-oriented features, better options are at your disposal.

As with a lot of Grails features, scaffolding is best demonstrated visually, so let’s plunge
right in and see what you can do.

Creating a Domain
Grails’ domain classes serve as the heart of your application and business-model concepts.
If you were constructing a bookstore application, for example, you would be thinking about
books, authors, and publishers. With gTunes you have other thoughts in mind, such as albums,
artists, and songs.

The most significant attribute that differentiates domain classes from other artifacts
within a Grails application is that they are persistent and that Grails automatically maps each
domain class onto a physical table in the configured database. (You’ll learn more about how to
change the database setup later in the chapter.)

18 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

The act of mapping classes onto a relational database layer is also known as object-
relational mapping (ORM). Grails’ ORM layer, called GORM, is built on the ever-popular
Hibernate library (http://www.hibernate.org).

Domain classes reside snugly in the grails-app/domain directory. You create a domain
class by using the grails create-domain-class helper command, or your favorite IDE or text
editor. Type the helper command shown in Listing 2-1 into a command window from the root
of the gTunes project.

Listing 2-1. Creating the Song Domain Class

$ grails create-domain-class com.g2one.gtunes.Song

Listing 2-1 shows that you’ll be using a package to hold your domain classes. Groovy
follows exactly the same packaging rules as Java, and as with Java, it is good practice to use
packages. You might not see the benefit of packages in the beginning, but as your application
grows and you begin taking advantage of Grails plugins and integrating more Java code, you
will appreciate the organization that they provide (for more about plugins, see Chapter 13).

Once the command in Listing 2-1 completes, the result will be a new Song domain class
located in the grails-app/domain/com/g2one/gtunes directory as dictated by the package prefix
specified. Figure 2-1 shows the newly created structure and the Song.groovy file containing the
domain class definition.

Figure 2-1. The Song domain class and the Song.groovy file

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 19

Currently, the Song domain isn’t doing a great deal; it’s simply a blank class definition as
shown in Listing 2-2.

Listing 2-2. The Song Domain Class

package com.g2one.gtunes
class Song {
}

At this point, you should think about what aspects make up a “Song”. Songs typically have
a title, an artist, and a duration, among other things. If you really want to go overboard, you
could model your Song domain class on all the fields you can populate in an MP3 file’s ID3 tag.
But in this case, keep it simple: add only the three previously mentioned properties as shown
in Listing 2-3.

Listing 2-3. Adding Properties to the Song Domain Class

package com.g2one.gtunes
class Song {
 String title
 String artist
 Integer duration
}

That was simple enough, and the class doesn’t look much different from your typical
Groovy bean (see the Appendix for information about Groovy beans). GORM essentially maps
the class name onto the table name and each property onto a separate column in the database,
with their types relating to SQL types. Don’t get too hung up on this now; we’ll be digging more
deeply into domain classes and GORM in Chapters 3 and 10. For the moment, let’s move on to
seeing the application in action.

Dynamic Scaffolding
Scaffolding comes in two flavors: dynamic (or runtime), and static (or template-driven). First
we’ll look at dynamic scaffolding, where a CRUD application’s controller logic and views are
generated at runtime. Dynamic scaffolding does not involve boilerplate code or templates; it
uses advanced techniques such as reflection and Groovy’s metaprogramming capabilities to
achieve its goals. However, before you can dynamically scaffold your Song class, you need a
controller.

You had a brief introduction to creating controllers in Chapter 1, and the controller code
necessary to enable scaffolding is minimal. Create the controller for the Song class either man-
ually or via the command line, as shown in Listing 2-4.

Listing 2-4. Creating the SongController

$ grails create-controller com.g2one.gtunes.Song

20 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

Again, you should use the package prefix with the grails create-controller command,
which will create the SongController within the grails-app/controllers/com/g2one/gtunes
directory (see Figure 2-2).

Figure 2-2. Locating the SongController in the directory

To enable dynamic scaffolding, within the SongController create a scaffold property with
the name of the target class as its value. In this case, it is the Song class, as shown in Listing 2-5.

Listing 2-5. Enabling Dynamic Scaffolding

package com.g2one.gtunes

class SongController {
 def scaffold = Song
}

■Note Groovy automatically resolves class names, such as Song in Listing 2-5, to the java.lang.Class
instance without requiring the .class suffix. In other words Song == Song.class.

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 21

With that done, simply start up Grails with the grails run-app command, open a browser,
and navigate to the gTunes application at the usual link: http://localhost:8080/gTunes.

The Grails welcome page, first demonstrated in Chapter 1, will show the SongController
instance in the list of available controllers as well as the usual comforting welcome message.
Click the SongController link to pull up a page listing all the Song objects (perhaps none, as the
case may be), as depicted in Figure 2-3.

Figure 2-3. The Song List page

Without breaking a sweat, and in a grand total of three lines of code (excluding the package
declaration), you have managed to create a useful CRUD interface that lets you create and fully
manage the Song instances within the gTunes application.

The Create Operation
The magic doesn’t end here. By clicking the “New Song” link at the top of the screen, you can
create new songs. While generating the views, Grails does its best to guess what type of field is
required to edit a property’s value. For example, if Grails finds a String, it will create a text field;
if it finds a java.util.Date, it will render drop-down boxes that allow you to select the date and
time. Figure 2-4 shows an example of what the generated song-creation interface looks like.

Grails’ built-in validation mechanism, called constraints, can also affect how the inter-
face is rendered, including the order in which fields are displayed and the type of field that is
rendered. Try clicking the “Create” button; you’ll get a validation error stating that the dura-
tion must be specified, as pictured in Figure 2-5. The validation messages hook into Grails’
internationalization support (often referred to with the abbreviation i18n). But for now, all

22 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

you need to know is that Grails is pulling these messages from the properties files within the
grails-app/i18n directory. (We’ll discuss constraints in Chapter 3 and internationalization
in Chapter 7.)

Figure 2-4. The Create Song page

Figure 2-5. How Grails handles validation

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 23

You could customize the message at this point, but for now the defaults will do. Now let’s
try to create a song with some valid data. Specifically, try to enter these values into the pro-
vided fields:

Artist: Kings of Leon

Duration: 176000

Title: The Bucket

Now click the “Create” button and move on to the next section of the chapter.

The Read Operation
Grails has obeyed instructions and duly created a new Song instance with the necessary data
in the database. You are then redirected to the “Show Song” screen where you can view and
admire a rendered view of the Song instance you just created.

Additionally, as pictured in Figure 2-6, the “Show Song” screen provides two buttons to let
you edit or delete the Song instance from the database.

Figure 2-6. The Show Song screen

Currently, you’re dealing with a trivial domain model with only a single Song domain class
to account for. However, another attribute of domain classes is that they typically have rela-
tionships such as one-to-many, one-to-one, and so on. If you think about a Song for a moment,
it is typically part of a collection of Songs within an album. Let’s create an Album domain class
to model this using the grails create-domain-class command as shown in Listing 2-6.

24 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

Listing 2-6. Creating the Album Domain Class

$ grails create-domain-class com.g2one.gtunes.Album

An Album has attributes of its own, such as a title, but it also contains many songs.
Listing 2-7 shows how to set up a one-to-many relationship between Album and Song using
the hasMany static property of domain classes. The hasMany property is assigned a Groovy map
where the key is the relationship name and the value is the class, in this case Song, to which the
association relates.

Listing 2-7. Defining a One-to-Many Relationship

package com.g2one.gtunes

class Album {
 String title
 static hasMany = [songs:Song]
}

The preceding association is unidirectional. In other words, only the Album class knows
about the association, while the Song class remains blissfully unaware of it. To make the asso-
ciation bidirectional, modify the Song class to include an Album local property as shown in
Listing 2-8. Now Album and Song have a bidirectional, one-to-many association.

Listing 2-8. Making the Relationship Bidirectional

package com.g2one.gtunes
class Song {
 ...
 Album album
}

In Chapter 3, we’ll delve into other kinds of relationships and how they map onto the
underlying database. For now, create another scaffolded controller that can deal with
the creation of Album instances. Use the grails create-controller command and add the
def scaffold = Album property to the class definition (see Listing 2-9).

Listing 2-9. Scaffolding the Album Class

package com.g2one.gtunes

class AlbumController {
 def scaffold = Album
}

Now if you return to your browser and refresh the Song list, you’ll notice that the Song you
entered previously has mysteriously vanished. The reason for this is quite simple: Grails by

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 25

default is running with an in-memory database, and updating domain classes creates a new
instance of it. You might find this useful for testing, but you can configure a different database
if you require a less volatile storage mechanism (we’ll discuss that later in this chapter).

More significant, however, is the fact that on the welcome page we have an additional
AlbumController. Click the AlbumController link, followed by the “New Album” button. Enter a
title for the Album such as “Aha Shake Heartbreak” and click the “Create” button to see your
newly created Album displayed (see Figure 2-7).

Figure 2-7. The Show Album screen

You’ll also notice that the Album has a blank Songs field. Let’s fix that next.

The Update Operation
You can perform updates by clicking the “Edit” button. In this case, you want to add a Song,
so click the “Add Song” link to see the “Create Song” interface. This time, you’ll get a useful
drop-down box that lets you select which Album the Song should be part of (as shown in
Figure 2-8). You’ll notice that scaffolding’s default behavior is simply to call toString() on
each element in the drop-down list. The default toString() that Grails provides uses the class
name and instance id, which is not the most pleasant thing to present to a user. You can over-
ride this behavior by implementing your own toString() method inside the Album class.

Next, populate the fields as described in the “The Create Operation” section and click the
“Create” button. You’ll notice that the “Show Song” screen provides a link back to the Album;
clicking the link shows the Album with the newly created Song instance appearing in the list of
songs (see Figure 2-9). Grails’ scaffolding, although not exuding genius, is clever enough to fig-
ure out what a one-to-many relationship is and how to manage it accordingly.

26 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

Figure 2-8. The Create Song screen

Figure 2-9. Show Album screen with a list of songs

The Delete Operation
Finally, to complete the CRUD acronym, you can delete a particular Song or Album by clicking
the “Delete” button. Grails is kind enough to inquire whether you are completely sure that
you’d like to proceed with such a destructive operation.

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 27

This completes the tour of Grails’ dynamic-scaffolding capabilities; in the next section
you’ll see how to get access to the underlying controller and view code that makes up these
CRUD interfaces.

Static Scaffolding
Dynamic scaffolding can serve a number of purposes, from creating administration interfaces
to providing the basis of a real application. However, it often becomes useful to take customi-
zation to a new level, particularly in terms of views. Fortunately, Grails provides the ability to
take a domain class and generate a controller and associated views from the command line
through the following targets:

• grails generate-views: Generates views for the specified domain class

• grails generate-controller: Generates a controller for the specified domain class

• grails generate-all: Generates both a controller and associated views

Called “static” or “template-driven” scaffolding, this approach offers benefits beyond
simple code generation. Notably, it provides an excellent learning tool to help you familiarize
yourself with the Grails framework and how everything fits together.

You’ve already created a domain model that relates specifically to the problem you’re
attempting to solve. Now you can generate code that relates to your domain, increasing your
chance of understanding the generated code. Let’s start by looking at how to generate a
controller.

Generating a Controller
To generate a controller that implements the CRUD functionality you saw in the section about
dynamic scaffolding, you can take advantage of the grails generate-controller command.
Like the other generate commands, generate-controller takes a domain class name as its first
argument. For example, Listing 2-10 shows how to use the generate-controller command to
output a new controller from the Album class.

Listing 2-10. Outputting a New Controller

$ grails generate-controller com.g2one.gtunes.Album
Generating controller for domain class com.g2one.gtunes.Album ...
File /Developer/grails-dev/apps/gTunes/grails-➥

app/controllers/com/g2one/gtunes/AlbumController.groovy already exists.
Overwrite?y,n,a
y
Finished generation for domain class com.g2one.gtunes.Album

Notice that, because the AlbumController class already exists, the generate-controller
command will ask whether you want to overwrite the existing controller. Entering the value “y”
for “yes” followed by hitting Enter will complete the process.

28 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

At this point, you should probably examine the contents of this mysterious controller to
see how many thousands of code lines have been generated. If you’re coming from a tradi-
tional Java web-development background, you might expect to implement a few different
classes. For example, you would likely need a controller that calls a business interface, which
in turn invokes a Data Access Object (DAO) that actually performs the CRUD operations.

Surely the DAO will contain mountains of ORM framework code, and maybe a few lines of
Java Database Connectivity (JDBC) mixed in for good measure. Surprisingly (or not, depending
on your perspective), the code is extremely concise at well under 100 lines. That’s still not quite
short enough to list in full here, but we will step through each action in the generated controller
to understand what it is doing.

The index action is the default, which is executed if no action is specified in the controller
Uniform Resource Identifier (URI). It simply redirects to the list action, passing any parame-
ters along with it (see Listing 2-11).

Listing 2-11. The index Action

 def index = {
 redirect(action:list, params:params)
 }

The list action provides a list of all albums, as shown in Listing 2-12. It delegates to the
static list method of the Album class to obtain a java.util.List of Album instances. It then
places the list of Album instances into a Groovy map literal (a java.util.LinkedHashMap under
the covers), which is then returned as the “model” from the controller to the view. (You’ll begin
to understand more about models and how they relate to views in Chapters 4 and 5.)

Listing 2-12. The list Action

 def list = {
 if(!params.max) params.max = 10
 [albumList: Album.list(params)]
 }

But hold on a second: before we get ahead of ourselves, have you noticed that you haven’t
actually written a static list method in the Album class? At this point, you will start to see the
power of GORM. GORM automatically provides a whole array of methods on every domain
class you write through Groovy’s metaprogramming capabilities, one of which is the list
method. By looking through this scaffolded code, you will get a preview of the capabilities
GORM has to offer.

For example, the show action, shown in Listing 2-13, takes the id parameter from the params
object and passes it to the get method of the Album class. The get method, automatically provided
by GORM, allows the lookup of domain instances using their database identifiers. The result of
the get method is placed inside a model ready for display, as shown in Listing 2-13.

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 29

Listing 2-13. The show Action

 def show = {
 def album = Album.get(params.id)

 if(!album) {
 flash.message = "Album not found with id ${params.id}"
 redirect(action:list)
 }
 else { return [album : album] }
 }

Notice how, in Listing 2-13, if the Album instance does not exist the code places a message
inside the flash object, which is rendered in the view. The flash object is a great temporary
storage for messages (or message codes if you’re using i18n); we’ll discuss it in more detail in
Chapter 4.

The action that handles deletion of albums is aptly named the delete action. It retrieves an
Album for the specified id parameter and, if it exists, deletes it and redirects it to the list action
(Listing 2-14).

Listing 2-14. The delete Action

 def delete = {
 def album = Album.get(params.id)
 if(album) {
 album.delete()
 flash.message = "Album ${params.id} deleted"
 redirect(action:list)
 }
 else {
 flash.message = "Album not found with id ${params.id}"
 redirect(action:list)
 }
 }

While similar to the show action, which simply displays an Album’s property values, the edit
action delegates to an edit view, which will render fields to edit the Album’s properties (see
Listing 2-15).

Listing 2-15. The edit Action

 def edit = {
 def album = Album.get(params.id)

30 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

 if(!album) {
 flash.message = "Album not found with id ${params.id}"
 redirect(action:list)
 }
 else {
 return [album : album]
 }
 }

You might be wondering at this point how Grails decides which view to display, given that
the code for the edit and show actions are almost identical. The answer lies in the power of con-
vention. Grails derives the appropriate view name from the controller and action names. In
this case, since you have a controller called AlbumController and an action called edit, Grails
will look for a view at the location grails-app/views/album/edit.gsp with the album directory
inferred from the controller name and the edit.gsp file taken from the action name. Simple,
really.

For updating you have the update action, which again makes use of the static get method
to obtain a reference to the Album instance. The magical expression album.properties = params
automatically binds the request’s parameters onto the properties of the Album instance. You
then save the Album instance by calling the save() method. If the save succeeds, an HTTP redi-
rect is issued back to the user; otherwise, the edit view is rendered again. You can find the full
code in Listing 2-16.

Listing 2-16. The update Action

 def update = {
 def album = Album.get(params.id)
 if(album) {
 album.properties = params
 if(!album.hasErrors() && album.save()) {
 flash.message = "Album ${params.id} updated"
 redirect(action:show,id:album.id)
 }
 else {
 render(view:'edit',model:[album:album])
 }
 }
 else {
 flash.message = "Album not found with id ${params.id}"
 redirect(action:edit,id:params.id)
 }
 }

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 31

To facilitate the creation of new Albums, the create action delegates to the create view.
The create view, like the edit view, displays appropriate editing fields. Note how the create
action inserts a new Album into the model to ensure that field values are populated from request
parameters (Listing 2-17).

Listing 2-17. The create Action

 def create = {
 [album: new Album(params)]
 }

Finally, the save action will attempt to create a new Album instance and save it to the data-
base (see Listing 2-18).

Listing 2-18. The save Action

 def save = {
 def album = new Album(params)
 if(!album.hasErrors() && album.save()) {
 flash.message = "Album ${album.id} created"
 redirect(action:show,id:album.id)
 }
 else {
 render(view:'create',model:[album:album])
 }
 }

In both the save and update actions, you alternate between using the redirect and render
methods. We’ll cover these further in Chapter 4, but briefly: the redirect method issues an
HTTP redirect that creates an entirely new request to a different action, while the render
method renders a selected view to the response of the current request.

Clearly, we’ve given only a brief overview of the various CRUD operations and what they
do, without elaborating on a lot of the magic that is going on here. There is, however, method
in our madness. The nitty-gritty details of controllers and how they work will surface in
Chapter 4. For the moment, however, let’s try out the newly generated controller by running
the gTunes application once again via the grails run-app target.

Once the server has loaded, navigate your browser to the AlbumController at the address
http://localhost:8080/gTunes/album. What happens? Well, not a great deal, actually. The
result is a page-not-found (404) error because the generated controller is not using dynamic
scaffolding. Dynamic scaffolding renders the views at runtime, but what you have here is just a
plain old controller—there’s nothing special about it, and there are no views.

32 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

■Note We can of course set the scaffold property to the Album class, and the views will be generated
with each action overridden.

Generating the Views
It would be nice to have some views for your actions to delegate to. Fortunately, you can gen-
erate them with the grails generate-views command, which is executed according to the
same process described in the section “Generating a Controller” (see Listing 2-19).

Listing 2-19. Generating Views

$ grails generate-views com.g2one.gtunes.Album
...
Running script /Developer/grails-dev/grails/scripts/GenerateViews.groovy
...
Generating views for domain class com.g2one.gtunes.Album ...
Finished generation for domain class com.g2one.gtunes.Album

The resulting output from the command window will resemble Figure 2-10.

Figure 2-10. The generated scaffolding views

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 33

All in all, you can generate four views:

• list.gsp: Used by the list action to display a list of Album instances

• show.gsp: Used by the show action to display an individual Album instance

• edit.gsp: Used by the edit action to edit a Album instance’s properties

• create.gsp: Used by the create action to create a new Album instance

■Note All the views use the main layout found at grails-app/views/layouts/main.gsp. This includes
the placement of title, logo, and any included style sheets. We’ll discuss layouts in detail in Chapter 5.

You now have a controller and views to perform CRUD. So what have you achieved
beyond what you saw in dynamic scaffolding? Well, nothing yet. The power of command-line
scaffolding is that it gives you a starting point to build your application. Having started with
nothing, you now have a controller in which you can place your own custom business logic.
You have views, which you can customize to your heart’s content. And you accomplished all
this while writing minimal code. The developers we know are on a constant mission to write
less code, and scaffolding proves a useful tool toward achieving this goal.

With the AlbumController and associated views in place, delete the existing SongController
and repeat the steps in Listings 2-10 and 2-19 to generate a controller and views for the Song
domain class. You’re going to need the generated code as you build on the basic CRUD functional-
ity in later chapters.

In the meantime, let’s move on to understanding more of what’s necessary to kick-start
your Grails development, beginning with environments.

Being Environmentally Friendly
Typically in any web-application production team, you have a development configuration for
the application that might be configured to work with a locally installed database. This config-
uration sometimes even differs from developer to developer, depending on their specific
desktop configurations.

In addition, QA staff who test the work produced by developers have separate machines
configured in a similar way to the production environment. So we have two environments so
far: the development configuration and the test configuration. The third is the production con-
figuration, which you need when the system goes live.

This scenario is ubiquitous across pretty much every development project, with each
development team spinning custom automated-build solutions via Ant or another custom-
build system, instead of getting the solution from the framework itself.

34 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

Grails supports the concept of development, test, and production environments by default
and will configure itself accordingly when executed. Some of this is done completely transpar-
ently to the developer. For example, autoreloading is enabled when Grails is configured in
development mode but disabled when it’s in production mode (to increase performance and
minimize any security risk, however small).

Executing Grails under different environments is remarkably simple. For instance, the fol-
lowing command will run a Grails application with the production settings:

$ grails prod run-app

If you recall the output of the grails help command, you will remember that the basic
usage of the grails command is as follows:

Usage (optionals marked with *):
grails [environment]* [target] [arguments]*

In other words, the first optional token after the grails executable is the environment, and
three built-in options ship with Grails:

• prod: The production environment settings. Grails executes in the most efficient man-
ner possible, against all configured production settings.

• test: The test environment settings. Grails executes in the most efficient manner possi-
ble, against all configured test settings.

• dev: The development environment settings. Grails is run in development mode with
tools and behavior (such as hot reloading) enabled to optimize developer productivity.

Of course, Grails is not limited to just three environments. You can specify your own cus-
tom environment by passing in a system property called grails.env to the grails command.
For example:

grails -Dgrails.env=myenvironment test-app

Here you execute the Grails test cases using an environment called myenvironment. So all
this environment switching is handy, but what does it mean in practical terms? For one thing,
it allows you to configure different databases for different environments, as you’ll see in the
next section.

Configuring Data Sources
Armed with your newly acquired knowledge of environments and how to switch between
them, you’ll see the implications when you start configuring data sources. What initial config-
uration steps are required to get a Grails application up and running? None. That’s right; you
don’t have to configure a thing.

Even configuring the data source is optional. If you don’t configure it, Grails will start up
with an in-memory HSQLDB database. This is highly advantageous to begin with, particularly
in terms of testing, because you can start an application with a fresh set of data on each load.

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 35

However, since it is a pretty common requirement, we will delve into data sources because
you’ll certainly need to configure them; plus, they’ll help you develop your knowledge of
environments.

The DataSource.groovy File
When you create a Grails application, Grails automatically provides a grails-app/conf/
DataSource.groovy file that contains configuration for each environment (see Figure 2-11).
You might find this convenient, because it means most of the work is done for you, but you
might prefer to use another database such as MySQL rather than the provided HSQLDB
database.

Figure 2-11. The DataSource.groovy file

Defining a data source is one area where the strength of the Java platform becomes
apparent. Java’s database connectivity technology, JDBC, is extremely mature, with drivers
available for pretty much every database on the market. In fact, if a database provider does
not deliver high-quality, stable JDBC drivers, its product is unlikely to be taken seriously in
the marketplace.

A data-source definition is translated into a javax.sql.DataSource instance that supplies
JDBC Connection objects. If you’ve used JDBC before, the process will be familiar, with the first
step ensuring that the driver classes, normally packaged within a JAR archive, are available on
the classpath.

36 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

The DataSource.groovy file contains some common configuration setup at the top of the
data-source definition, an example of which is presented in Listing 2-20.

Listing 2-20. Common Data-Source Configuration

 dataSource {
 pooled = true
 driverClassName = "org.hsqldb.jdbcDriver"
 username = "sa"
 password = ""
 }

The snippet indicates that by default you want a pooled data source using the HSQLDB
driver with a username of “sa” and a blank password. You could apply defaults to several other
settings. Here’s a list of the settings that the DataSource.groovy file provides:

• driverClassName: This is the class name of the JDBC driver.

• username: This is the username used to establish a JDBC connection.

• password: This is the password used to establish a JDBC connection.

• url: This is the JDBC URL of the database.

• dbCreate: This specifies whether to autogenerate the database from the domain model.

• pooled: This specifies whether to use a pool of connections (it defaults to true).

• configClass: This is the class that you use to configure Hibernate.

• logSql: This setting enables SQL logging.

• dialect: This is a string or class that represents the Hibernate dialect used to communi-
cate with the database.

Now we get to the interesting bit. Following the global dataSource block, you’ll see envi-
ronment-specific settings for each known environment: development, test, and production.
Listing 2-21 presents a shortened example of the environment-specific configuration.

Listing 2-21. Environment-Specific Data-Source Configuration

 environments {
 development {
 dataSource {
 dbCreate = "create-drop"
 url = "jdbc:hsqldb:mem:devDB"
 }
 }

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 37

 test {
 ...
 }
 production {
 ...
 }
 }

You’ll notice that by default the development environment is configured to use an
in-memory HSQLDB, with the URL of the database being jdbc:hsqldb:mem:devDB. Also note
the dbCreate setting, which allows you to configure how the database is autocreated.

■Note Hibernate users will be familiar with the possible values because dbCreate relates directly to the
hibernate.hbm2ddl.auto property.

The dbCreate setting of the development environment is configured as create-drop, which
drops the database schema and re-creates it every time the Grails server is restarted. This set-
ting can prove useful for testing because you start off with a clean set of data each time. The
available settings for the dbCreate property are as follows:

• create-drop: Drops and re-creates the database schema on each application load

• create: Creates the database on application load

• update: Creates and/or attempts an update to existing tables on application load

• [blank]: Does nothing

The production and test environments both use update for dbCreate so that existing
tables are not dropped, but created or updated automatically. You might find it necessary in
some production environments to create your database schema manually. Or maybe creat-
ing your database schema is your DBA’s responsibility. If either is the case, simply remove
the dbCreate property altogether and Grails will do nothing, leaving this task in your or your
colleague’s hands.

Configuring a MySQL Database
Building on the knowledge you’ve gained in the previous section about configuring an alterna-
tive database, you’re now going to learn how to set up MySQL with Grails. You’re going to
configure Grails to use MySQL within the production environment, and to achieve this you
need to tell Grails how to communicate with MySQL. You’re using JDBC, so this requires a suit-
able driver. You can download drivers from the MySQL web site at http://www.mysql.com.

In this book’s examples, we’ll be using version 5.1.6 of MySQL Connector/J. To configure
the driver, drop the driver’s JAR file into the lib directory of the gTunes application, as shown
in Figure 2-12.

38 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

Figure 2-12. Adding the driver’s JAR file to the application’s lib directory

With the driver in place, the next thing to do is configure the Grails DataSource to use
the settings defined by the driver’s documentation. This is common practice with JDBC (and
equivalent technologies on other platforms) and essentially requires the following
information:

• The driver class name

• The URL of the database

• The username to log in with

• The password for the username

Currently the production DataSource is configured to use an HSQLDB database that per-
sists to a file. Listing 2-22 shows the production-database configuration.

Listing 2-22. The Production Data-Source Configuration

 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:hsqldb:file:prodDb;shutdown=true"
 }
 }

Notice that the remaining settings (username, password, driverClassName, and so on)
are inherited from the global configuration, as shown in Listing 2-20. To configure MySQL

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 39

correctly, you need to override a few of those defaults as well as change the database URL.
Listing 2-23 presents an example of a typical MySQL setup.

Listing 2-23. MySQL Data-Source Configuration

 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:mysql://localhost/gTunes"
 driverClassName = "com.mysql.jdbc.Driver"
 username = "root"
 password = ""
 }
 }

This setup assumes a MySQL server is running on the local machine, which has been set
up with a blank root user password. Of course, a real production environment might have the
database on a different machine and almost certainly with a more secure set of permissions.
Also note that you must specify the name of the MySQL driver using the driverClassName
setting.

Configuring a JNDI Data Source
Another common way to set up a production data source in Grails is to use a container-
provided Java Naming and Directory Interface (JNDI) data source. This kind of setup is
typical in corporate environments where the configuration of a data source is not up to you,
but to the deployment team or network administrators.

Configuring a JNDI data source in Grails couldn’t be simpler; specifying the JNDI name is
the only requirement. Listing 2-24 shows a typical JNDI setup.

Listing 2-24. JNDI Data-Source Configuration

 production {
 dataSource {
 jndiName = "java:comp/env/jdbc/gTunesDB"
 }
 }

Of course, this assumes that the work has been done to configure the deployment envi-
ronment to supply the JNDI data source correctly. Configuring JNDI resources is typically
container-specific, and we recommend that you review the documentation supplied with
your container (such as Apache Tomcat) for instructions.

Supported Databases
Because Grails leverages Hibernate, it supports every database that Hibernate supports. And
because Hibernate has become a de facto standard, it has been tried and tested against many
different databases and versions.

40 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

As it stands, the core Hibernate team performs regular integration tests against the follow-
ing database products:

• DB2 7.1, 7.2, 8.1

• HSQLDB

• HypersonicSQL 1.61, 1.7.0, 1.7.2, 1.8

• Microsoft SQL Server 2000

• MySQL 3.23, 4.0, 4.1, 5.0

• Oracle 8i, 9i, 10g

• PostgreSQL 7.1.2, 7.2, 7.3, 7.4, 8.0, 8.1

• SAP DB 7.3

• Sybase 12.5 (jConnect 5.5)

• TimesTen 5.1

In addition, although not included in the Hibernate QA team’s testing processes, these
database products come with community-led support:

• Apache Derby

• HP NonStop SQL/MX 2.0

• Firebird 1.5 with JayBird 1.01

• FrontBase

• Informix

• Ingres

• InterBase 6.0.1

• Mckoi SQL

• PointBase Embedded 4.3

• Progress 9

• Microsoft Access 95, 97, 2000, XP, 2002, and 2003

• Corel Paradox 3.0, 3.5, 4.x, 5.x, and 7.x to 11.x

• A number of generic file formats including flat text, CSV, TSV, and fixed-length and vari-
able-length binary files

• XBase (any dBASE; Visual dBASE; SIx Driver; SoftC; CodeBase; Clipper; FoxBase; FoxPro;
Visual Fox Pro 3.0, 5.0, 7.0, 8.0, 9.0, and 10.0; xHarbour; Halcyon; Apollo; GoldMine; or
Borland Database Engine (BDE)-compatible database)

• Microsoft Excel 5.0, 95, 97, 98, 2000, 2001, 2002, 2003, and 2004

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 41

A few, mostly older, database products that don’t support JDBC metadata (which allows
a database to expose information about itself) require you to specify the Hibernate dialect
explicitly using the dialect property of the data-source definition. You can find available dia-
lects in the org.hibernate.dialect package. You’ll learn more about data-source definitions in
future chapters, including Chapter 12. For now, since we have readied our application for the
production environment, let’s move on to the next step: deployment.

Deploying the Application
When you execute a Grails application using the run-app command, Grails configures the
application to be reloaded upon changes at runtime, allowing quick iterative development.
This configuration does, however, affect your application’s performance. The run-app com-
mand is thus best suited for development only. For deployment onto a production system, you
should use a packaged Web Application Archive (WAR) file. Doing this follows Java’s mature
deployment strategy and the separation of roles between developers and administrators.

As a significant added bonus, Grails’ compliance with the WAR format means that IT pro-
duction teams don’t need to learn any new skills. The same application servers, hardware,
profiling, and monitoring tools that you use with today’s Java applications work with Grails, too.

Deployment with run-war
If you are satisfied with the built-in Jetty container as a deployment environment, you can
quickly deploy your application by setting up Grails on your production environment and then
checking out your Grails application from the version-control system you have locally. Once
you’ve done this, simply type:

grails run-war

This command packages up Grails as a WAR file and then runs Jetty using the packaged
WAR on port 8080. If you wish to change the port, you can follow the instructions in the “Step 6:
Running the Application” section of Chapter 1.

As for the Jetty configuration itself, modifying the GRAILS_HOME/conf/webdefault.xml file
can customize that.

Deployment with a WAR file
The run-war command is convenient, but you might want more control over your deployment
environment. Or you might want to deploy onto another container, such as Apache Tomcat or
BEA WebLogic, instead of Jetty.

What you need in these cases is a WAR file. The WAR file is the standardized mechanism
for deployment in the Java world. Every Java EE–compliant web container supports the format.
But some older containers might have quirks, so check out the http://grails.org/Deployment
page on the wiki for helpful info on container-specific issues.

To create a WAR archive, use Grails’ war command:

$ grails war

42 C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S

By default, if no environment is specified, Grails assumes use of the production environ-
ment for a WAR file. However, as with other commands, you can change the environment if
needed. For example:

$ grails test war

Once you’ve run the command, a brand-new WAR file appears in the root of your project
directory (see Figure 2-13).

Figure 2-13. The gTunes WAR file

If the root directory is not a convenient location for the WAR file, you can always change it
by specifying the target WAR location as the last argument to the war command:

$ grails test war /path/to/deploy/gTunes.war

With the WAR file created, you just need to follow your container’s deployment instruc-
tions (which might be as simple as dropping the file into a particular directory), and you’re
done. Notice how the WAR file includes a version number? Grails features built-in support for
application versioning. You’ll learn more about versioning and deployment in Chapter 12.

Summary
Wow, that was a lot of ground to cover. You generated a simple CRUD interface, configured a
different data source, and produced a WAR file ready for deployment. You learned some of the
basics about how controllers work in Grails and previewed what is to come with GORM, Grails’
object-relational mapping layer.

C H A P T E R 2 ■ G E T T I N G S T A R T E D W I T H G R A I L S 43

You also played with Grails’ support for running different environments and configured
a MySQL database for production. All of this should have given you a solid grounding in the
basics of working with Grails. However, so far we’ve only touched on concepts such as domain
classes, controllers, and views without going into much detail. This is about to change as we
plunge head first into the gory details of what makes Grails tick.

Starting with Chapter 3, we’ll begin the in-depth tour of the concepts in Grails. As we do
that, we’ll begin to build out the gTunes application and transform it from the prototype it is
now into a full-fledged, functional application.

45

■ ■ ■

C H A P T E R 3

Understanding Domain Classes

Object-oriented (OO) applications almost always involve a domain model representing the
business entities that the application deals with. Our gTunes application will include a number
of domain classes including Artist, Album, and Song. Each of these domain classes has proper-
ties associated with it, and you must map those properties to a database in order to persist
instances of those classes.

Developers of object-oriented applications face some difficult problems in mapping
objects to a relational database. This is not because relational databases are especially difficult
to work with; the trouble is that you encounter an “impedance mismatch”1 between the
object-oriented domain model and a relational database’s table-centric view of data.

Fortunately, Grails does most of the hard work for you. Writing the domain model for a
Grails application is significantly simpler than with many other frameworks. In this chapter, we
are going to look at the fundamentals of a Grails domain model. In Chapter 10, we will cover
more advanced features of the GORM tool.

Persisting Fields to the Database
By default, all the fields in a domain class are persisted to the database. For simple field types
such as Strings and Integers, each field in the class will map to a column in the database. For
complex properties, you might require multiple tables to persist all the data. The Song class
from Chapter 2 contains two String properties and an Integer property. The table in the data-
base will contain a separate column for each of those properties.

In MySql, that database table will look something like Listing 3-1.

1. Scott W. Ambler, “The Object-Relational Impedance Mismatch,” http://www.agiledata.org/essays/
impedanceMismatch.html, 2006.

46 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

Listing 3-1. The Song Table

+----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+----------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
artist	varchar(255)	NO		NULL	
duration	int(11)	NO		NULL	
title	varchar(255)	NO		NULL	
+----------+--------------+------+-----+---------+----------------+

Notice that the table includes not only a column for each of the properties in the domain
class, but also an id column and a version column. The id is a unique identifier for a row and
Grails uses the version column to implement optimistic locking2.

Listing 3-1 shows the default mapping. Grails provides a powerful DSL for expressing how
a domain model maps to the database. Details about the mapping DSL appear later in this
chapter in the “Customizing Your Database Mapping” section.

Validating Domain Classes
You’ll probably encounter business rules that constrain the valid values of a particular prop-
erty in a domain class. For example, a Person must never have an age that is less than zero. A
credit-card number must adhere to an expected pattern. Rules like these should be expressed
clearly, and in only one place. Luckily, Grails provides a powerful mechanism for expressing
these rules.

A Grails domain class can express domain constraints simply by defining a public static
property named constraints that has a closure as a value. Listing 3-2 shows a version of the
Song class that has several constraints defined.

Listing 3-2. The Song Domain Class

class Song {
 String title
 String artist
 Integer duration

 static constraints = {
 title(blank: false)
 artist(blank: false)
 duration(min: 1)
 }
}

2. Wikipedia, “Optimistic concurrency control,” http://en.wikipedia.org/wiki/
Optimistic_concurrency_control.

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 47

The Song class in Listing 3-2 defines constraints for each of its persistent properties. The
title and artist properties cannot be blank. The duration property must have a minimum
value of 1. When constraints are defined, not every property necessarily needs to be con-
strained. The constraints closure can include constraints for a subset of properties in the class.

The validators used in Listing 3-2 are blank and min. Grails ships with a lot of standard val-
idators that cover common scenarios (see Table 3-1).

The constraints block in a domain class will help prevent invalid data from being saved
to the database. The save() method on a domain object will automatically validate against the
constraints before the data is written to the database. Data is not written to the database if

Table 3-1. Standard Validators in Grails

Name Example Description

blank login(blank:false) Set to false if a string value cannot be blank

creditCard cardNumber(creditCard:true) Set to true if the value must be a credit-card
number

email homeEmail(email:true) Set to true if the value must be an e-mail address

inList login(inList:[‘Joe’, ‘Fred’]) Value must be contained within the given list

length login(length:5..15) Uses a range to restrict the length of a string or
array

min duration(min:1) Sets the minimum value

minLength password(minLength:6) Sets the minimum length of a string or array
property

minSize children(minSize:5) Sets the minimum size of a collection or number
property

matches login(matches:/[a-zA-Z]/) Matches the supplied regular expression

max age(max:99) Sets the maximum value

maxLength login(maxLength:5) Sets the maximum length of a string or array
property

maxSize children(maxSize:25) Sets the maximum size of a collection or number
property

notEqual login(notEqual:’Bob’) Must not equal the specified value

nullable age(nullable:false) Set to false if the property value cannot be null

range age(range:16..59) Set to a Groovy range of valid values

scale salary(scale:2) Set to the desired scale for floating-point
numbers

size children(size:5..15) Uses a range to restrict the size of a collection or
number

unique login(unique:true) Set to true if the property must be unique

url homePage(url:true) Set to true if a string value is a URL address

48 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

validation fails. Listing 3-3 demonstrates how code can react to the return value of the save()
method.

Listing 3-3. Validating a Song Object

// -68 is an invalid duration
def song = new Song(title:'The Rover',
 artist:'Led Zeppelin',
 duration:-68)
if(song.save()) {
 println "Song was created!"
} else {
 song.errors.allErrors.each { println it.defaultMessage }
}

An interesting aspect of Listing 3-3 is the usage of the errors property on domain
classes. This property is an instance of the Spring Framework’s org.springframework.
validation.Errors interface, which allows advanced querying of validation errors. In
Listing 3-3, when validation fails, the code generates a list of all the errors that occurred
and prints them to stdout.

Some of the more useful methods in the Spring Errors interface are shown in Listing 3-4.

Listing 3-4. Methods in the Spring Errors Interface

package org.springframework.validation;
interface Errors {
 List getAllErrors();
 int getErrorCount();
 FieldError getFieldError(String fieldName);
 int getFieldErrorCount();
 List getFieldErrors(String fieldName);
 Object getObjectName();
 boolean hasErrors();
 boolean hasFieldErrors(String fieldName);
 // ...x remaining methods
}

Occasionally you’ll find it useful to make changes to the domain model before committing
to the save() method. In this case, Grails provides a validate() method, which returns a
Boolean value to indicate whether validation was successful. The semantics are exactly the
same as in the previous example with the save() method, except, of course, that the validate()
method doesn’t perform persistent calls.

If validation does fail, the application might want to make changes to the state of the
domain object and make another attempt at validation. All domain objects have a method
called clearErrors(), which will clear any errors left over from a previous validation attempt.
Listing 3-5 demonstrates how code might react to the return value of the validate() method.

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 49

Listing 3-5. Validating a Song Object, Revisited

def song = new Song(title:'The Rover',
 duration:339)
if(!song.validate()) {
 song.clearErrors()
 song.artist = 'Led Zeppelin'
 song.validate()
}

Using Custom Validators
Grails provides a wide array of built-in validators to handle many common scenarios. However,
it is impossible to foresee every feasible domain model and every specific kind of validation that
an application might need. Fortunately, Grails provides a mechanism that allows an application
to express arbitrary validation rules (see Listing 3-6).

Listing 3-6. Constraining the Password Property in the User Domain Class

class User {
 static constraints = {
 password(unique:true, length:5..15, validator:{val, obj ->
 if(val?.equalsIgnoreCase(obj.firstName)) {
 return false
 }
 })
 }
}

The validator in Listing 3-6 will fail if the password is equal to the firstName property of
the User class. The validator closure should return false if validation fails; otherwise it should
return true. The first argument passed to the closure is the value of the property to be validated.
The second argument passed to the closure is the object being validated. This second argu-
ment is often useful if validation requires the inspection of the object’s other properties, as in
Listing 3-6.

In addition, when you return false from a custom validator, an error code such as
user.password.validator.error is produced. However, you can specify a custom error code
by returning a String:

if(val?.equalsIgnoreCase(obj.firstName)) {
 return "password.cannot.be.firstname"
}

In this example, you can trigger a validation error simply by returning a String with the
value password.cannot.be.firstname. You’ll be learning more about error codes and how they
relate to other parts of the application in later chapters. For now, let’s move on to the topic of
transient properties.

50 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

Understanding Transient Properties
By default, every property in a domain class is persisted to the database. For most properties,
this is the right thing to do. However, occasionally a domain class will define properties that do
not need to be persisted. Grails provides a simple mechanism for specifying which properties
in a domain class should not be persisted. This mechanism is to define a public static property
named transients and assign to that property a value that is a list of Strings. Those Strings rep-
resent the names of the class’s properties, which should be treated as transient and not saved
to the database (see Listing 3-7).

Listing 3-7. A Transient Property in the Company Domain Class

class Company {
 String name
 Integer numberOfEmployees
 BigDecimal salaryPaidYTD

 static transients = ['salaryPaidYTD']
}

In Listing 3-7, the salaryPaidYTD property has been flagged as transient and will not be
saved to the database. Notice that the default generated schema for this domain class does not
contain a column for the salaryPaidYTD property (see Listing 3-8). In other words, the company
table does not contain a column for the transient property.

Listing 3-8. The Company Table

+---------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
name	varchar(255)	NO		NULL	
number_of_employees	int(11)	NO		NULL	
+---------------------+--------------+------+-----+---------+----------------+

Not all persistent properties necessarily correspond to a field in a domain class. For exam-
ple, if a domain class has a method called getName() and a method called setName(), then that
domain class has a persistent property called name. It doesn’t matter that the class doesn’t have
a field called “name.” Grails will handle that situation by creating the appropriate column in
the database to store the value of the name property. But you can use the transients property to
tell Grails not to do that if the property really should not be persisted, as in Listing 3-9.

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 51

Listing 3-9. A Transient Property in the Company Domain Class

class Company {
 BigDecimal cash
 BigDecimal receivables
 BigDecimal capital

 BigDecimal getNetWorth() {
 cash + receivables + capital
 }

 static transients = ['netWorth']
}

Customizing Your Database Mapping
As we have seen already, Grails does a good job of mapping your domain model to a relational
database, without requiring any kind of mapping file. Many developer productivity gains that
Grails offers arise from its Convention over Configuration (CoC) features. Whenever the con-
ventions preferred by Grails are inconsistent with your requirements, Grails does a great job of
providing a simple way for you to work with those scenarios. The Custom Database Mapping
DSL in Grails falls in this category.

Grails provides an ORM DSL for expressing your domain mapping to help you deal with
scenarios in which the Grails defaults will not work for you. A common use case for taking
advantage of the ORM DSL is when a Grails application is being developed on top of an existing
schema that is not entirely compatible with Grails’ default domain-class mappings.

Consider a simple Person class (see Listing 3-10).

Listing 3-10. The Person Domain Class

class Person {
 String firstName
 String lastName
 Integer age
}

The default mapping for that class will correspond to a schema that looks like Listing 3-11.

52 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

Listing 3-11. The Default Person Table

+------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
age	int(11)	NO		NULL	
first_name	varchar(255)	NO		NULL	
last_name	varchar(255)	NO		NULL	
+------------+--------------+------+-----+---------+----------------+

That works perfectly if you have a greenfield application that doesn’t need to map to an
existing schema. If the application does need to map to an existing schema, the schema will
probably not match up exactly to the Grails defaults. Imagine that a schema does exist, and
that it looks something like Listing 3-12.

Listing 3-12. A Legacy Table Containing Person Data

+-------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------------------+--------------+------+-----+---------+----------------+
person_id	bigint(20)	NO	PRI	NULL	auto_increment
person_age	int(11)	NO		NULL	
person_first_name	varchar(255)	NO		NULL	
person_last_name	varchar(255)	NO		NULL	
+-------------------+--------------+------+-----+---------+----------------+

Notice that the table contains no version column and all the column names are prefixed
with person_. You’ll find it straightforward to map to a schema like that using Grails’ ORM DSL.
But to take advantage of the ORM DSL, your domain class must declare a public property
called mapping and assign a closure to the property (see Listing 3-13).

Listing 3-13. Custom Mapping for the Person Domain Class

class Person {
 String firstName
 String lastName
 Integer age

 static mapping = {
 id column:'person_id'
 firstName column:'person_first_name'
 lastName column:'person_last_name'
 age column:'person_age'
 version false
 }
}

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 53

The example in Listing 3-13 defines column names for each of the properties and turns off
the version property, which Grails uses for optimistic locking. These are just a couple of the
features that the ORM DSL supports.

The default table name for persisting instances of a Grails domain class is the name of the
domain class. Person objects are stored in a person table and Company objects are stored in a
company table. If Person objects need to be stored in a people table, the ORM DSL allows for that.
Listing 3-14 includes the necessary mapping code to store Person instances in the people table.

Listing 3-14. A Custom Table Mapping for the Person Domain Class

class Person {
 String firstName
 String lastName
 Integer age

 static mapping = {
 table 'people'
 }
}

We’ll cover custom database mapping in more detail in Chapter 17.

Building Relationships
Typically an application is not made up of a bunch of disconnected domain classes. More
often, domain classes have relationships to one another. Of course, not every domain class
has a direct relationship with every other domain class, but it is not common for a domain
class to exist in total isolation with no relationship to any other domain class.

Grails provides support for several types of relationships between domain classes. In a
one-to-one relationship (the simplest type), each member of the relationship has a reference
to the other. The relationship represented in Listing 3-15 is a bidirectional relationship.

Listing 3-15. A One-to-One Relationship Between a Car and an Engine

class Car {
 Engine engine
}

class Engine {
 Car car
}

In this model, clearly a Car has one Engine and an Engine has one Car. The entities are peers
in the relationship; there is no real “owner.” Depending on your application requirements, this
might not be exactly what you want. Often a relationship like this really does have an owning
side. Perhaps an Engine belongs to a Car, but a Car does not belong to an Engine. Grails provides
a mechanism for expressing a relationship like that, and Listing 3-16 demonstrates how to
specify the owning side of it.

54 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

Listing 3-16. An Engine Belongs to a Car

class Car {
 Engine engine
}

class Engine {
 static belongsTo = [car:Car]
}

The value of the belongsTo property in the Engine class is a Map. The key in this map is “car”
and the value associated with that key is the Car class. This property tells Grails that the Car is
the owning side of this relationship and that an Engine “belongs to” its owning Car. The key in
the map can be named anything—the name does not need to be the same as the owning-class
name. However, naming the key that way almost always makes sense. That key represents the
name of a property that will be added to the Engine class, as well as representing the reference
back to the owner. The Engine class in Listing 3-16 has a property called car of type Car.

You might encounter situations where a relationship needs an owning side but the owned
side of the relationship does not need a reference back to its owner. Grails supports this type
of relationship using the same belongsTo property, except that the value is a Class reference
instead of a Map. With the approach used in Listing 3-17, the Engine still belongs to its owning
Car, but the Engine has no reference back to its Car.

Listing 3-17. An Engine Belongs to a Car But Has No Reference to Its Owner

class Engine {
 static belongsTo = Car
}

One of the implications of having the belongsTo property in place is that Grails will impose
cascaded deletes. Grails knows that an Engine “belongs to” its owning Car, so any time a Car is
deleted from the database, its Engine will be deleted as well.

One-to-many relationships are equally simple to represent in Grails domain classes.
Our gTunes application will require several one-to-many relationships, including the relation-
ship between an Artist and its Albums and between an Album and its Songs. You might say that
an Artist has many Albums and an Album has many songs. That “has many” relationship is
expressed in a domain class with the hasMany property (see Listing 3-18).

Listing 3-18. The hasMany Property

class Artist {
 String name

 static hasMany = [albums:Album]
}

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 55

class Album {
 String title

 static hasMany = [songs:Song]
 static belongsTo = [artist:Artist]
}

class Song {
 String title
 Integer duration

 static belongsTo = Album
}

In Listing 3-18, an Artist has many Albums and an Album belongs to its owning Artist.
An Album also has a reference back to its owning Artist. An Album has many Songs and a Song
belongs to its owning Album. However, a Song does not have a reference back to its owning Album.

The value of the hasMany property needs to be a Map. The keys in the map represent the
names of collection properties that will be added to the domain class, and the values associ-
ated with the keys represent the types of objects that will be stored in the collection property.
The Artist class has a domain property called albums that will be a collection of Album
objects. The default collection type that Grails will use is a java.util.Set, which is an unor-
dered collection. Where this is the desired behavior, you don’t need to declare the property
explicitly. Grails will inject the property for you. If you need the collection to be a List or a
SortedSet, you must explicitly declare the property with the appropriate type, as shown in
Listing 3-19.

Listing 3-19. The Album Class Has a SortedSet of Song Objects

class Album {
 String title

 static hasMany = [songs:Song]
 static belongsTo = [artist:Artist]

 SortedSet songs
}

■Note For this to work, the Song class must implement the Comparable interface. This requirement isn’t
specific to Grails; it’s how standard SortedSet collections work in Java.

56 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

A domain class might represent the owning side of numerous one-to-many relation-
ships. The Map associated with the hasMany property might have any number of entries in it,
each entry representing another one-to-many-relationship. For example, if an Artist has
many Albums but also has many Instruments, you could represent that by adding another
entry to the hasMany property in the Artist class, as shown in Listing 3-20.

Listing 3-20. Multiple Entries in the hasMany Map

class Artist {
 String name

 static hasMany = [albums:Album, instruments:Instrument]
}

Extending Classes with Inheritance
Grails domain classes can extend other Grails domain classes. This inheritance tree might be
arbitrarily deep, but a good domain model will seldom involve more than one or two levels of
inheritance.

The syntax for declaring that a Grails domain class extends from another domain class is
standard Groovy inheritance syntax, as shown in Listing 3-21.

Listing 3-21. Extending the Person Class

class Person {
 String firstName
 String lastName
 Integer age
}

class Employee extends Person {
 String employeeNumber
 String companyName
}

class Player extends Person {
 String teamName
}

How should these classes map to the database? Should there be separate tables for each of
these domain classes? Should there be one table for all types of Person objects? Grails provides
support for both of those solutions. If all Person objects—including Players and Employees—

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 57

are to be stored in the same table, this approach is known as a table-per-hierarchy mapping.
That is, a table will be created for each inheritance hierarchy (see Listing 3-22). Grails imposes
table-per-hierarchy mapping as the default for an inheritance relationship.

Listing 3-22. The Person Table Representing a Table-Per-Hierarchy Mapping

+-----------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
age	int(11)	NO		NULL	
first_name	varchar(255)	NO		NULL	
last_name	varchar(255)	NO		NULL	
class	varchar(255)	NO		NULL	
company_name	varchar(255)	YES		NULL	
employee_number	varchar(255)	YES		NULL	
team_name	varchar(255)	YES		NULL	
+-----------------+--------------+------+-----+---------+----------------+

Notice that Listing 3-22 includes columns for all the attributes in the Person class along
with columns for all the attributes in all the subclasses. In addition, the table includes a dis-
criminator column called class. Because this table will house all kinds of Person objects, the
discriminator column is required to represent what specific type of Person is represented in
any given row. The application should never need to interrogate this column directly, but the
column is critical for Grails to do its work.

The other type of inheritance mapping is known as table-per-subclass (see Listing 3-23).

Listing 3-23. Table-Per-Subclass Mapping

class Person {
 String firstName
 String lastName
 Integer age

 static mapping = {
 tablePerHierarchy false
 }
}

Table-per-subclass mapping results in a separate table for each subclass in an inheritance
hierarchy (see Listing 3-24). To take advantage of a table-per-subclass mapping, the parent
class must use the ORM DSL to turn off the default table-per-hierarchy mapping.

58 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

Listing 3-24. The Person, Employee, and Player Tables with Table-Per-Subclass Mapping

+------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
age	int(11)	NO		NULL	
first_name	varchar(255)	NO		NULL	
last_name	varchar(255)	NO		NULL	
+------------+--------------+------+-----+---------+----------------+

+-----------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------+--------------+------+-----+---------+-------+
id	bigint(20)	NO	PRI	NULL	
company_name	varchar(255)	YES		NULL	
employee_number	varchar(255)	YES		NULL	
+-----------------+--------------+------+-----+---------+-------+

+-----------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+-------+
| id | bigint(20) | NO | PRI | NULL | |
| team_name | varchar(255) | YES | | NULL | |
+-----------+--------------+------+-----+---------+-------+

Which of these mappings should you use? The answer depends on several factors. One of
the consequences of the table-per-hierarchy approach is that none of the subclasses can have
nonnullable properties, but because no joins are being executed, queries will perform better.
This is because all the subclasses share a table that includes columns for all the properties in all
the subclasses. When a Player is saved to the person table, the company_name column would be
left null because players don’t have a company name. Likewise, when an Employee is saved
to the player table, the team_name column would be left null. One of the consequences of using
the table-per-subclass approach is that you must pay a performance penalty when retrieving
instances of the subclasses because database joins must be executed to pull together all the
data necessary to construct an instance.

Grails lets you choose the approach that makes the most sense for your application. Con-
sider your application requirements and typical query use cases. These should help you decide
which mapping strategy is right for any particular inheritance relationship. Note that you don’t
need to apply the same mapping strategy across the entire application. There’s nothing wrong
with implementing one inheritance relationship using table-per-subclass mapping because
you must support nonnullable properties, and implementing some other unrelated inherit-
ance relationship using table-per-hierarchy mapping for performance reasons.

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 59

Embedding Objects
Grails supports the notion of composition, which you can think of as a stronger form of rela-
tionship. With that kind of relationship, it often makes sense to embed the “child” inline where
the “parent” is stored. Consider a simple relationship between a Car and an Engine. If that rela-
tionship were implemented with composition, the Engine would really belong to the Car. One
consequence of that: If a Car were deleted, its Engine would be deleted with it (see Listing 3-25).

Listing 3-25. A Composition Relationship Between the Car and Engine Domain Classes

class Car {
 String make
 String model
 Engine engine
}

class Engine {
 String manufacturer
 Integer numberOfCylinders
}

Normally Car objects and Engine objects would be stored in separate tables, and you’d use
a foreign key to relate the tables to each other (see Listings 3-26 and 3-27).

Listing 3-26. The Car Table

+-----------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-----------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
engine_id	bigint(20)	NO	MUL	NULL	
make	varchar(255)	NO		NULL	
model	varchar(255)	NO		NULL	
+-----------+--------------+------+-----+---------+----------------+

Listing 3-27. The Engine Table

+---------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+---------------------+--------------+------+-----+---------+----------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
manufacturer	varchar(255)	NO		NULL	
number_of_cylinders	int(11)	NO		NULL	
+---------------------+--------------+------+-----+---------+----------------+

60 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

To treat the relationship between those classes as composition, the Car class must instruct
Grails to “embed” the Engine in the Car. You do this by defining a public static property called
embedded in the Car class and assign that property a list of strings that contains the names of all
the embedded properties (see Listing 3-28).

Listing 3-28. Embedding the Engine in a Car

class Car {
 String make
 String model
 Engine engine
 static embedded = ['engine']
}

With that embedded property in place, Grails knows that the Engine property of a Car
object should be embedded in the same table with the Car object. The car table will now look
like Listing 3-29.

Listing 3-29. The Car Table with the Engine Attributes Embedded

+----------------------------+--------------+------+-----+---------+---------------+
| Field | Type | Null | Key | Default | Extra |
+----------------------------+--------------+------+-----+---------+---------------+
id	bigint(20)	NO	PRI	NULL	auto_increment
version	bigint(20)	NO		NULL	
engine_manufacturer	varchar(255)	NO		NULL	
engine_number_of_cylinders	int(11)	NO		NULL	
make	varchar(255)	NO		NULL	
model	varchar(255)	NO		NULL	
+----------------------------+--------------+------+-----+---------+---------------+

Testing Domain Classes
Automated tests can be an important part of building complex applications and confirming
that the system behaves as intended. In particular, testing is an important part of building
complex systems with a dynamic language like Groovy. With dynamic languages, developers
don’t get the same kinds of feedback from the compiler that they might get if they were working
with a statically typed language like Java.

For example, in Java if you make a typo in a method invocation, the compiler will let you
know that you have made the mistake. The compiler cannot flag that same error when you use
Groovy because of the language’s dynamic nature and its runtime. With a dynamic language
like Groovy, many things are not known until runtime. You must execute the code to learn
whether it’s correct. Executing the code from automated tests is an excellent way to help
ensure that the code is doing what it is supposed to do.

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 61

Grails offers first-class support for testing many aspects of your application. In this sec-
tion, we will look at testing domain classes.

Grails directly supports two kinds of tests: unit tests and integration tests. Unit tests reside
at the top of the project in the test/unit/ directory, and integration tests reside in the test/
integration/ directory. You must understand the difference between unit tests and integra-
tion tests. Many dynamic things happen when a Grails application starts up. One of the things
Grails does at startup is augment domain classes with a lot of dynamic methods such as
validate() and save(). When you run integration tests, all of that dynamic behavior is avail-
able, so a test can invoke the validate() or save() method on a domain object even though
these methods do not appear in the domain-class source code.

When you run unit tests, however, that full dynamic environment is not fired up, so
methods such as validate() and save() are not available. Starting up the whole dynamic
environment comes at a cost. For this reason, you should run tests that rely on the full Grails
runtime environment only as integration tests.

That said, Grails provides advanced mocking capabilities that let you mock the behavior
of these methods in a unit test. If you create a domain class using the create-domain-class
command, Grails will create a unit test automatically. If you execute grails create-domain-
class Artist (see Listing 3-30), Grails will create grails-app/domain/Artist.groovy and test/
unit/ArtistTests.groovy. Grails is encouraging you to do the right thing—to write tests for
your domain classes. If you don’t use the create-domain-class command to create your
domain class, you can create the test on your own. Make sure to put the test in the appropriate
directory.

Listing 3-30. The Unit Test for the Artist Class, Generated Automatically

class ArtistTests extends grails.test.GrailsUnitTestCase {

 void testSomething() {

 }
}

As you can see from Listing 3-30, the default unit-test template extends from the parent
class grails.test.GrailsUnitTestCase. The GrailsTestUnitCase class is a test harness that
provides a range of utility methods to mock the behavior of a Grails application. To run the test,
invoke the test-app Grails command from the command line. The test-app command will run
all the unit tests and integration tests that are part of the project. To run a specific test, invoke
the test-app target with an argument that represents the name of the test to run. The name
of the test to run should be the test-case name without the “Tests” suffix. For example, execute
grails test-app Artist to run the ArtistTests test case.

The test-app target will not only run the tests, but also generate a report including the
status of all the tests that were run. This report is a standard JUnit test report, which Java devel-
opers know very well. An HTML version of the report will be generated under the project root
at test/reports/html/index.html.

62 C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S

The Song class in the gTunes application has title and duration properties (see Listing 3-31).

Listing 3-31. The Song Domain Class

class Song {
 String title
 Integer duration
}

The application should consider a nonpositive duration to be an invalid value. The type
of the property is java.lang.Integer, whose valid values include the full range of values in a
32-bit signed int, including zero and a lot of negative numbers. The application should include
a unit test like that shown in Listing 3-32, which asserts that the system should not accept non-
positive durations.

Listing 3-32. The Song Unit Test

class SongTests extends grails.test.GrailsUnitTestCase {
 void testMinimumDuration() {

 // mock the behavior of the Song domain class
 mockDomain(Song)

 // create a Song with an invalid duration
 def song = new Song(duration: 0)

 // make sure that validation fails
 assertFalse 'validation should have failed', song.validate()

 // make sure that validation failed for the expected reason
 assertEquals "min", song.errors.duration
 }
}

Notice the call to the mockDomain(Class) method in Listing 3-32 that provides a mock
implementation of the validate() method on the Song domain class. Executing grails test-
app Song will run the test. The test should fail initially because it contains no code specifying
that 0 is an invalid value for the duration property. Starting with a failing test like this sub-
scribes to the ideas of Test-Driven Development (TDD). The test represents required behavior,
and it will “drive” the implementation to satisfy the requirement.

Adding a simple domain constraint to the Song class as shown in Listing 3-33 should satisfy
the test.

C H A P T E R 3 ■ U N D E R S T A N D I N G D O M A I N C L A S S E S 63

Listing 3-33. The Song Domain Class with a Constraint

class Song {
 String title
 Integer duration

 static constraints = {
 duration(min:1)
 }
}

With that constraint in place, the unit test should pass. The domain class is written to
satisfy the requirements expressed in the test. Specifically, the domain class considers any
nonpositive value for duration to be invalid.

Summary
This chapter covered quite a bit of ground by introducing the fundamentals of Grails domain
classes. Grails provides slick solutions to common problems like validating domain classes and
mapping to a relational database. The GORM technology is responsible for much of that capa-
bility. We’ll explore GORM in more detail in later chapters, including Chapters 10 and 17.

65

■ ■ ■

C H A P T E R 4

Understanding Controllers

A Grails controller is a class that is responsible for handling requests coming in to the appli-
cation. The controller receives the request, potentially does some work with the request, and
finally decides what should happen next. What happens next might include the following:

• Execute another controller action (possibly, but not necessarily, in the same controller)

• Render a view

• Render information directly to the response

A controller is prototyped, meaning that a new instance is created per request. So develop-
ers don’t need to be as cautious about maintaining thread-safe code in a singleton controller.

You can think of controllers as the orchestrators of a Grails application. They provide the
main entry point for any Grails application by coordinating incoming requests, delegating to
services or domain classes for business logic, and rendering views.

Let’s look at the basics of how to create a controller before moving on to meatier subjects
such as data binding and command objects.

Defining Controllers
A controller is a class defined under the grails-app/controllers directory. The class name
must end with “Controller” by convention. Controllers do not need to extend any special base
class or implement any special interfaces.

Listing 4-1 shows a typical controller, residing at the location grails-app/controllers/
SampleController.groovy, that defines an action called index. The index action renders a sim-
ple textual response.

Listing 4-1. The SampleController Class

class SampleController {
 def index = {
 render 'You accessed the Sample controller...'
 }
}

66 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

With this controller in place, a request to /sample/index will result in the String “You
accessed the Sample controller . . . ” being rendered back to the browser. You can see that
actions, like the index action, are defined as fields. Each field is assigned a block of code using
a Groovy closure. A controller can define any number of actions, as shown in Listing 4-2.

Listing 4-2. Defining Multiple Actions

class SampleController {
 def first = { ... }
 def second = { ... }
 def third = { ... }
 def fourth = { ... }
}

In Chapter 6, you will learn about the powerful URL-mapping support that Grails pro-
vides. By default, URLs are mapped to controller actions by way of a convention. The first
part of the URL represents which controller to access, and the second part of the URL repre-
sents which action should be executed. For example, /sample/first will execute the first
action in the SampleController. Likewise, /sample/second will execute the second action in
the SampleController.

Setting the Default Action
You don’t necessarily need to specify the action to execute in the URL. If no action is specified,
Grails will execute the default action in the specified controller. You can identify the default
action using the following rules (see Listing 4-3):

• If the controller defines only one action, it becomes the default action.

• If the controller defines an action called index, it becomes the default action.

• If the controller defines a property called defaultAction, its value is the name of the
default action.

Listing 4-3. The Default Action

// Here the 'list' action is the default as there is only one action defined
class SampleController {
 def list = {}
}

// In this example 'index' is the default by convention
class SampleController {
 def list = {}
 def index = {}
}

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 67

// Here 'list' is explicitly set as the default
class SampleController {
 def defaultAction = 'list'
 def list = {}
 def index = {}
}

Logging
Logging, an important aspect of any application, allows the application to report textual infor-
mation about what is going on inside it. Various logging solutions exist on the Java platform,
including third-party logging solutions as well as the standard logging API introduced in Java
1.4. You face a certain amount of complexity in configuring logging for an application.

Often, application developers will avoid this complexity by avoiding logging altogether and
opt instead for simply printing messages using System.out.println and System.err.println. For
a variety of reasons, this is really not a good idea.

Fortunately, Grails tackles much of the complexity involved with setting up logging. A log
property, which is injected into every controller, is an instance of org.apache.commons.logging.Log.
You don’t need to write any code to initialize the log property because the framework handles that.
Listing 4-4 documents the org.apache.commons.logging.Log API.

Listing 4-4. The org.apache.commons.logging.Log Interface

public interface Log {
 public void debug(Object msg);
 public void debug(Object msg, Throwable t);
 public void error(Object msg);
 public void error(Object msg, Throwable t);
 public void fatal(Object msg);
 public void fatal(Object msg, Throwable t);
 public void info(Object msg);
 public void info(Object msg, Throwable t);
 public void trace(Object msg);
 public void trace(Object msg, Throwable t);
 public void warn(Object msg);
 public void warn(Object msg, Throwable t);
 public boolean isDebugEnabled();
 public boolean isErrorEnabled();
 public boolean isFatalEnabled();
 public boolean isInfoEnabled();
 public boolean isTraceEnabled();
 public boolean isWarnEnabled();
}

68 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

The log property that is injected into a controller can be used from any controller action or
any method within the controller (see Listing 4-5).

Listing 4-5. Using the log Property

class SampleController {
 def index = {
 log.info('In the index action...')
 // ...
 }
}

Logging Exceptions
Groovy translates all exceptions into runtime exceptions, so Groovy code is never forced
to catch an exception. This differs from what Java developers are used to. In any case, even
though an application is never forced to catch an exception, it makes sense to catch an excep-
tion in a lot of scenarios. In Groovy, the details for how to catch an exception are exactly the
same as they are in Java. There is no special Groovy syntax for handling exceptions.

When an exception is caught in a controller, you’ll almost always want to log details about
the exception using the log property (see Listing 4-6).

Listing 4-6. Logging an Exception

class SampleController {
 def index = {
 try {
 // do something that might throw an exception
 } catch (Exception e) {
 log.error ('some message goes here', e)
 }
 }
}

Accessing Request Attributes
Java servlet developers will recognize components such as HttpServletRequest,
HttpServletResponse, HttpSession, ServletContext, and others. These are all standard
players in the servlet space. The Grails framework differs greatly from your standard
servlet-based web frameworks, of course. However, Grails is built on top of those same
servlet APIs. Table 4-1 contains a list of standard attributes that are automatically
injected into Grails controllers.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 69

Many of the previously listed attributes are standard servlet API objects, whose documen-
tation you can find on Sun’s Java technology web site at http://java.sun.com/. It is, however,
interesting to observe how working with a Grails controller differs from working with these
objects.

A common way to interact with the request, for example, is to retrieve or set a request
attribute. The session and servlet context also have attributes that you can set or retrieve. Grails
unifies these by overriding the dot dereference and subscript operators. Table 4-2 shows the
difference between accessing request, session, and servlet context attributes in regular Java
servlets compared to accessing them in Grails controllers.

Table 4-1. Standard Request Attributes

Attribute Description

actionName The name of the currently executing action

actionUri The relative URI of the executing action

controllerName The name of the currently executing controller

controllerUri The URI of executing controller

flash The object for working with flash scope

log An org.apache.commons.logging.Log instance

params A map of request parameters

request The HttpServletRequest object

response The HttpServletResponse object

session The HttpSession object

servletContext The ServletContext object

Table 4-2. Differences Between Request Attributes in Java Servlets and Grails Controllers

Java Servlet Grails Controller

request.getAttribute("myAttr"); request.myAttr

request.setAttribute("myAttr", "myValue"); request.myAttr = "myValue"

session.getAttribute("mAttr"); session.myAttr

session.setAttribute("myAttr", "myValue""); session.myAttr = "myValue"

servletContext.getAttribute("mAttr"); servletContext.myAttr

servletContext.setAttribute("myAttr", "myValue""); servletContext.myAttr = "myValue"

70 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Of course, if you are accustomed to writing code like that in the left column of the table,
you can continue to do so; Grails just makes it a little bit easier.

Using Controller Scopes
You can choose from a number of scopes when developing controllers. The following list
defines all the scopes available in order of their longevity:

• request: Objects placed into the request are kept for the duration of the currently exe-
cuting request.

• flash: Objects placed into flash are kept for the duration of the current request and the
next request only.

• session: Objects placed into the session are kept until the user session is invalidated,
either manually or through expiration.

• servletContext: Objects placed into the servletContext are shared across the entire
application and kept for the lifetime of the application.

As you can see, each scope is unique, and provides very different semantics. In an ideal
world, sticking to request scope allows you to maintain a completely stateless application. In
terms of scalability, this has significant advantages, as you do not need to consider issues such
as replication of session state and session affinity.

However, you can certainly scale stateful applications that use flash and session scope
using container-provided replication services or distributed data grids. The advantage of
session scope is that it allows you to associate data on the server with individual clients. This
typically works using cookies to associate individual users with their sessions.

Finally, the servletContext is a rarely used scope that allows you to share state across the
entire application. Although this can prove useful, you should exercise caution when using
the servletContext because objects placed within it will not be garbage-collected unless the
application explicitly removes them. Also, access to the servletContext object is not synchro-
nized, so you need to do manual synchronization if you plan to read and write objects from the
servletContext object, as shown in Listing 4-7.

Listing 4-7. Synchronized Access to the ServletContext

def index = {
 synchronized(servletContext) {
 def myValue = servletContext.myAttr
 servletContext.myAttr = "changed"
 render myValue
 }
}

Of course, writing code like this will result in a serious bottleneck in your application,
which leads us to the best-practice usage of the servletContext object: in general, if you really
need to use the servletContext, you should prepopulate it with any values you need at startup
and then read those values only at runtime. This allows you to access the servletContext in an
unsynchronized manner.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 71

Understanding Flash Scope
The flash object is a map accessible in the same way as the params object, the fundamental dif-
ference being that key/value pairs stored in the flash object are stored in flash scope. What is
flash scope? It’s best explained with the problem it solves.

A common usage pattern in web applications is to do some processing and then redirect
the request to another controller, servlet, or whatever. This is not an issue in itself, except, What
happens when the request is redirected? Redirecting the request essentially creates a brand-
new request, wiping out all previous data that might have resided in the request attributes. The
target of the redirect often needs this data, but unfortunately, the target action is out of luck.
Some have worked around this issue by storing this information in the session instead.

This is all fine and good, but the problem with the session is that developers often forget to
clear out this temporarily stored data, which places the burden on the developer to explicitly
manage this state. Figure 4-1 illustrates this problem in action.

The first request that comes in sets an attribute on the request called “message.” It then
redirects the request by sending a redirect response back to the client. This creates a brand-
new request instance, which is sent to the controller. Sadly, the message attribute is lost and
evaluates to null.

Figure 4-1. Request attributes and redirects

To get around this little annoyance, the flash object stores its values for the next request
and the next request only, after which they automatically vanish. This feature manages the
burden of this kind of use case for you. It’s another small but significant feature that allows you
to focus on the problem at hand instead of the surrounding issues.

72 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

One of the more common use cases for flash scope is to store a message that will display
when some form of validation fails. Listing 4-8 demonstrates how to store a hypothetical mes-
sage in the flash object so it’s available for the next request.

Listing 4-8. Storing a Message in Flash Scope

flash.message = 'I am available next time you request me!'

Remember that the flash object implements java.util.Map, so all the regular methods of
this class are also available. Figure 4-2 shows how flash scope solves the aforementioned prob-
lem. Here, on the first request, you store a message variable to the flash object and then redirect
the request. When the new request comes in, you can access this message, no problem. The mes-
sage variable will then automatically be removed for the next request that comes in.

■Note The flash object does still use the HttpSession instance internally to store itself, so if you require
any kind of session affinity or clustering, remember that it applies to the flash object, too.

Figure 4-2. Using flash scope

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 73

Accessing Request Parameters
A controller action is often given input that will affect the behavior of the controller. For exam-
ple, if a user submits a form that he or she has filled out, all the form’s field names and values
will be available to the controller in the form of request parameters. The standard servlet API
provides an API for accessing request parameters. Listing 4-9 shows how a controller might
retrieve the userName request parameter.

Listing 4-9. Request Parameters via Standard Servlet API

def userName = request.getParameter('userName')
log.info("User Name: ${userName}")

One of the dynamic properties injected into a Grails controller is a property called params.
This params property is a map of request parameters. Listing 4-10 shows how a controller might
retrieve the userName request parameter using the params property.

Listing 4-10. Request Parameters via params Property

def userName = params.userName
log.info("User Name: ${userName}")

Rendering Text
In its most basic form, you can use the render method from a controller to output text to the
response. Listing 4-11 demonstrates how to render a simple String to the response.

Listing 4-11. Rendering a Simple String

render 'this text will be rendered back as part of the response'

Optionally, you can specify the contentType:

render text:'<album>Revolver</album>', contentType:'text/xml'

The most common use of the render method is to render a GSP view or a GSP template.
We’ll cover GSP in detail in Chapter 5.

Redirecting a Request
Often a controller action will need to redirect control to another controller action. This is a
common thing for a controller action to do, so Grails provides a simple technique to manage
redirecting to another controller action.

Grails provides all controllers with a redirect method that accepts a map as an argument.
The map should contain all the information that Grails needs to carry out the redirect, includ-
ing the name of the action to redirect to. In addition, the map can contain the name of the
controller to redirect to.

74 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

 Specifying the controller is required only if the request is being redirected to an action
defined in a controller other than the current controller. Listing 4-12 shows a standard redirect
from the first action to the second action within the sample controller.

Listing 4-12. A Simple Redirect

class SampleController {
 def first = {
 // redirect to the "second" action...
 redirect(action: "second")
 }
 def second = {
 // ...
 }
}

If the redirect is bound for an action in another controller, you must specify the name of the
other controller. Listing 4-13 demonstrates how to redirect to an action in another controller.

Listing 4-13. Redirecting to an Action in Another Controller

class SampleController {
 def first = {
 // redirect to the 'list' action in the 'store' controller...
 redirect(action: "list", controller: "store")
 }
}

Although the previous examples are pretty trivial, the redirect method is pretty flexible.
Table 4-3 shows the different arguments that the redirect method accepts.

As you can see, the redirect method allows you to effectively pass control from one action
to the next. However, often you simply want to formulate some data to be rendered by a view.
In the next couple of sections, we’ll take a look at how to achieve this.

Table 4-3. Redirect Arguments

Argument Name Description

action The name of or a reference to the action to redirect to

controller The name of the controller to redirect to

id The id parameter to pass in the redirect

params A map of parameters to pass

uri A relative URI to redirect to

url An absolute URL to redirect to

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 75

Creating a Model
One of the most fundamental activities carried out in a controller is gathering data that will be
rendered in the view. A controller can gather data directly or delegate to Grails services or other
components to gather the data. However the controller gathers the data, the data is typically
made available to the view in the form of a map that the controller action returns. When a con-
troller action returns a map, that map represents data that the view can reference. Listing 4-14
displays the show action of the SongController.

Listing 4-14. Returning a Map of Data to be Rendered by the View

class SongController {
 def show = {
 [song: Song.get(params.id)]
 }
}

Remember that return statements are optional in Groovy. Because the last expression
evaluated in the show action is a map, the map is the return value from this action. This map
contains data that will be passed in to the view to be rendered. In Listing 4-14, the sole key in
the map is song and the value associated with that key is a Song object retrieved from the data-
base based on the id request parameter.

Now the view can reference this song. Whereas this map contains only a single entry, a
map returned from a controller action can include as many entries as is appropriate. Every
entry represents an object that the view can reference.

A controller action does not have to return a model, so what happens if no model is
returned? The simple answer is that it depends on what the action does. If the action writes
directly to the response output, there is no model; conversely, if a controller action simply del-
egates to the view with no model returned, the controller’s properties automatically become
the model. This allows you to write code like that shown in Listing 4-15 as an alternative to the
show action you have already seen.

Listing 4-15. The Controller as the Model

class SongController {
 Song song
 def show = {
 this.song = Song.get(params.id)
 }
}

The technique you choose to use is as much up to personal preference as anything else.
You’ll often find greater clarity in returning an explicitly defined map. Use whatever makes the
most sense in your case, and keep in mind that consistency can be as important as anything
else in terms of writing code that is easy to understand and maintain.

76 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Rendering a View
The subject of views in Grails is important, and we’ll dedicate an entire chapter to it (see
Chapter 5). But for now, you need to understand how Grails goes about view selection from
a controller’s point of view. First, let’s look at the default view-selection strategy.

Finding the Default View
As you saw in Listing 4-15, the SongController has a single action called show. The show action
returns a model containing a single key, called song, which references an instance of the Song
domain class. However, nowhere in the code can you see any reference to the view that will be
used to deal with the rendering part of this action.

That’s perfectly understandable because we haven’t explicitly told Grails what view
to render. To mitigate this problem, Grails makes that decision for you based on the conven-
tions in the application. In the case of the show action, Grails will look for a view at the
location grails-app/views/song/show.gsp. The name of the view is taken from the name
of the action, while the name of the parent directory is taken from the controller name.
Simple, really.

But what if you want to display a completely different view? The ever-flexible render
method comes to the rescue again.

Selecting a Custom View
To tell Grails to render a custom view, you can use the render method’s view argument as
shown in Listing 4-16.

Listing 4-16. Rendering a Custom View

class SongController {
 def show = {
 render(view:"display",model:[song: Song.get(params.id)])
 }
}

Notice how you can use the model argument to pass in the model, rather than using
the return value of the action. In the example in Listing 4-16, we’re asking Grails to render
a view called “display.” In this case, Grails assumes you mean a view at the location
grails-app/views/song/display.gsp. Notice how the view is automatically scoped with
the grails-app/views/song directory.

If the view you want to render is in another, possibly shared, directory, you can specify an
absolute path to the view:

render(view:"/common/song", model:[song: Song.get(params.id)])

By starting with a / character, you can reference any view within the grails-app/views
directory. In the previous example, Grails will try to render a view at the location grails-app/
views/common/song.gsp.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 77

Rendering Templates
In addition to views, Grails supports the notion of templates—small snippets of view code that
other views can include. We’ll be covering templates in more detail in Chapter 5, but for now,
just know that you can render a template from a controller using the render method:

render(template:"/common/song", model:[song: Song.get(params.id)])

In this case, Grails will try to render a template at the location grails-app/views/common/
_song.gsp. Notice how, unlike views, the name of the template starts with an underscore by
convention.

Performing Data Binding
Often a controller action will need to create new domain objects and populate the properties
of the instance with values received as request parameters. Consider the Album domain class,
which has properties such as genre and title. If a request is made to the save action in the
AlbumController, the controller action could create a new Album and save it using a technique
like that shown in Listing 4-17.

Listing 4-17. Populating an Album with Request Parameters

class AlbumController {
 def save = {
 def album = new Album()
 album.genre = params.genre
 album.title = params.title
 album.save()
 }
}

The approach in Listing 4-17 assigns values to domain properties based on corresponding
request parameters. It might work for simple models with a small number of properties, but as
your domain model grows in complexity, this code gets longer and more tedious. Fortunately,
the Grails framework provides some slick options for binding request parameters to a domain
object.

Remember that the params object in your controller is a map of name/value pairs. You can
pass maps to a domain class’s constructor to initialize all the domain class’s properties with
the corresponding request parameters. Listing 4-18 shows a better approach to creating and
populating an Album object.

Listing 4-18. Populating an Album by Passing params to the Constructor

class AlbumController {
 def save = {
 def album = new Album(params)
 album.save()
 }
}

78 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

■Caution The features detailed so far can leave your web application open to URL attacks due to the auto-
matic setting of properties from request parameters. This is a common issue among frameworks that perform
such conversion (including Ruby on Rails, Spring MVC, WebWork, and so on). If you are developing a web
application with heightened security in mind, you should use fine-grained control over data binding through
the bindData method (described later) and stricter validation.

As you can see, this is a much cleaner approach and scales better as the number of prop-
erties in a domain class grows.

Occasionally, setting properties on a domain object that has already been constructed can
prove useful. For example, you retrieve a domain object from the database and then need to
update it with values passed to the controller as request parameters. In a case like this, passing
a map of parameters to the domain-class constructor will not help because the object already
exists. Grails provides yet another slick solution here. You can use a domain class’s properties
property in conjunction with request parameters to update an existing object, as shown in
Listing 4-19.

Listing 4-19. Updating an Existing Object with Request Parameters

class AlbumController {
 def update = {
 def album = Album.get(params.id)
 album.properties = params
 album.save()
 }
}

Whenever your application accepts user input, there is a chance that said input might
not be what your application requires. You’ve already seen in Chapter 3 how to define custom-
validation constraints on domain classes; now you’ll begin to understand how you can use
data binding in combination with these constraints to validate incoming data.

Validating Incoming Data
The mechanics of Grails’ data-binding and data-validation process has two phases. First, let’s
revisit the following line of code:

album.properties = params

At this point, Grails will attempt to bind any incoming request parameters onto the prop-
erties of the instance. Groovy is a strongly typed language and all parameters arrive as strings,
so some type conversion might be necessary.

Underneath the surface, Grails uses Spring’s data-binding capabilities to convert request
parameters to the target type if necessary. During this process, a type-conversion error can
occur if, for example, converting the String representation of a number to a java.lang.Integer
is impossible. If an error occurs, Grails automatically sets the persistent instance to read-only

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 79

so it cannot be persisted unless you explicitly persist it yourself (refer to Chapter 10 for more
information on automatic dirty checking).

If all is well, the second phase of validation commences. At this point, you validate the
persistent instance against its defined constraints using either the validate() method or the
save() method as described in Chapter 3:

album.validate()

Grails will validate each property of the Album instance and populate the Errors object with
any validation errors that might have occurred. This brings us nicely into a discussion of the
Errors API.

The Errors API and Controllers
The mechanics of Grails’ validation mechanism is built entirely on Spring’s org.
springframework.validation package. As discussed in Chapter 3, whenever you
validate a domain instance, a Spring org.springspringframework.validation.Errors
object is created and associated with the instance.

From a controller’s point of view, when you have a domain object in an invalid state—
typically due to invalid user input that changes an instance using data binding—you need
to use branching logic to handle the validation error.

Listing 4-20 shows an example of how you could use data binding to update an Album
instance and validate its state.

Listing 4-20. Dealing with Validation Errors

def save = {
 def album = Album.get(params.id)
 album.properties = params
 if(album.save()) {
 redirect(action: "show", id:album.id)
 }
 else {
 render(view: "edit", model:[album:album])
 }
}

Notice how in Listing 4-20 you can call the save() method, which triggers validation,
and send the user back to the edit view if a validation error occurs. When a user enters
invalid data, the errors property on the Album will be an Errors object containing one or
more validation errors.

You can programmatically decipher these errors by iterating over them:

album.errors.allErrors.each { println it.code }

If you merely want to check if an instance has any errors, you can call the hasErrors()
method on the instance:

if(album.hasErrors()) println "Something went wrong!"

80 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

In the view, you can render these using the <g:renderErrors> tag:

<g:renderErrors bean="${album}" />

You’ll be learning more about handling errors in the view through the course of the book,
but as you can see, it’s frequently the controller’s job to coordinate errors that occur and
ensure the user enters valid data.

Data Binding to Multiple Domain Objects
In the examples of data binding you’ve seen so far, the assumption has been that you wish to
bind parameters to a single domain instance. However, you might encounter a scenario in
which you must create several domain instances.

Consider, for example, the creation of Artist instances in the gTunes application. The
application might require that an Artist can exist only if he or she has released at least one
Album. In this case, it makes sense to create both the Artist and the first Album simultaneously.

To understand data binding when dealing with multiple domain instances, you first need
to understand how parameters are submitted from forms. Consider, for example, the case of
updating an Album and the line:

album.properties = params

In this case, the expectation is that parameters are not namespaced in any way. In other
words, to update the title property of the Album instance, you can provide an HTML input
such as the following:

<input type="text" name="title" />

Notice how the name of the <input> matches the property name. This clearly would not
work in the case of multiple domain classes because you might have two different domain
classes that have a property called title. You can get around this problem namespacing any
parameters passed using a dot:

<input type="text" name="album.title" />
<input type="text" name="artist.name" />
...

Now create and bind both Album and Artist instances by referring to them within the
params object by their respective namespaces:

def album = new Album(params["album"])
def artist = new Artist(params["artist"])

Data Binding with the bindData Method
The data-binding techniques you have seen so far are automatic and handled implicitly by
Grails. However, in some circumstances you might need to exercise greater control over the
data-binding process or to bind data to objects other than domain classes. To help tackle
this issue, Grails provides a bindData method that takes the object to bind the data to and a
java.util.Map.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 81

The map should contain keys that match the property names of the target properties
within the passed object. As an example, if you wanted to ensure only the title property was
bound to an Album instance, you could use the code shown in Listing 4-21.

Listing 4-21. Using the bindData Method

class AlbumController {
 def save = {
 def album = Album.get(params.id)
 bindData(album, params, [include:"title"])
 ...
 }
}

Notice how in Listing 4-21 you can pass the Album instance as the first argument, and the
parameters to bind to the instance as the second argument. The final argument is a map spec-
ifying that you wish to include only the title property in the data-binding process. You could
change the key within the map to exclude if you wished to bind all properties except the title
property.

Finally, as you saw in the previous section, you can bind to multiple domain instances
using Grails’ default data-binding mechanism. You can do this with the bindData method too,
using the last argument that specifies the prefix to filter by:

bindData(album, params, [include:"title"], "album")

In this example, the prefix “album” is passed as the last argument, making the bindData
method bind all parameters that begin with the album. prefix.

Data Binding and Associations
The final topic to consider when doing data binding is how it relates to associations. The easiest
case to understand is many-to-one and one-to-one associations. For example, consider the
artist property of the Album class, which is a many-to-one association, as shown in Listing 4-22.

Listing 4-22. The artist Association of the Album Class

class Album {
 Artist artist
 ...
}

You need to consider two cases when working with a many-to-one association like this.
The first involves creating new instances. Suppose you create a new Album instance using
this code:

def album = new Album(params)

In this case, if any parameters reference the artist association, such as artist.name, a
new Artist instance will be automatically instantiated and assigned to the Album instance.
The names of the properties to set are taken from the value of the right side of the dot in the

82 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

request-parameter name. With artist.name, the property to set is name. To further clarify, the
following <input> tag shows an example of a form field that will populate the artist associa-
tion of the Album class:

<input type="text" name="artist.name" />

The second scenario occurs when you are assigning an existing instance of an associa-
tion (an existing Artist, for example) or modifying an association. To do this, you need to
pass the association’s identifier using a request parameter with the .id suffix. For example,
you can use the following <input> to specify the Artist that should be associated with an
existing or new Album:

<input type="text" name="artist.id" value="1" />

With single-ended associations out of the way, let’s consider associations that contain
multiple objects. For example, an Album has many Song instances in its songs associations.
What if you wanted to provide a form that enabled you to create an Album and its associated
songs? To enable this, you can use subscript-style references to populate or update multiple
Song instances:

<input type="text" name="songs[0].title" value="The Bucket" />
<input type="text" name="songs[1].title" value="Milk" />

Note that the default collection type for association in Grails is a java.util.Set, so unless
you change the default to java.util.List, the order of entries will not be retained because Set
types have no concept of order. If you want to create a new Album instance and populate the
songs association with an existing collection of songs, then you can just specify their identifiers
using the .id suffix:

<input type="text" name="songs[0].id" value="23" />
<input type="text" name="songs[1].id" value="47" />

Working with Command Objects
Sometimes a particular action doesn’t require the involvement of a domain class, but still
requires the validation of user input. In this case, you might want to consider using a command
object. A command object is a class that has all the data-binding and data-validation capabili-
ties of a domain class, but is not persistent. In other words, you can define constraints of a
command object and validate them just like a domain class.

Defining Command Objects
A command object requires the definition of class, just like any other object. You can define
command classes in the grails-app/controllers directory or even in the same file as a con-
troller. Unlike Java, Groovy supports the notion of multiple class definitions per file, which is
quite handy if you plan to use a particular command object only for the controller you’re
working with.

For example, you could define an AlbumCreateCommand that encapsulates the validation
and creation of new Album instances before they are saved. Listing 4-23 presents such an
example.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 83

Listing 4-23. An Example Command Object Definition

class AlbumCreateCommand {
 String artist
 String title
 List songs = []
 List durations = []

 static constraints = {
 artist blank:false
 title blank:false
 songs minSize:1, validator:{ val, obj ->
 if(val.size() != obj.durations.size())
 return "songs.durations.not.equal.size"
 }
 }

 Album createAlbum() {
 def artist = Artist.findByName(artist) ?: new Artist(name:artist)
 def album = new Album(title:title)
 songs.eachWithIndex { songTitle, i ->
 album.addToSongs(title:songTitle, duration:durations[i])
 }
 return album
 }
}

In Listing 4-23, you can see a command-object definition that is designed to capture
everything necessary to subsequently create a valid Album instance. Notice how you can define
constraints on a command object just like in a domain class. The createAlbum() method,
which is optional, is interesting because it shows how you can use command objects as facto-
ries that take a valid set of data and construct your domain instances. In the next section, you’ll
see how to take advantage of the command object in Listing 4-23.

Using Command Objects
In order to use a command object, you need to specify the command as the first argument in a
controller action. For example, to use AlbumCreateCommand, you need to have a save action such
as the one shown in Listing 4-24.

Listing 4-24. Using a Command Object

class AlbumController {
...
 def save = { AlbumCreateCommand cmd ->
 ...
 }
}

84 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

As you can see from the code highlighted in bold, you need to explicitly define the command
object using its type definition as the first argument to the action. Here’s what happens next:
when a request comes in, Grails will automatically create a new instance, bind the incoming
request parameters to the properties of the instance, and pass it to you as the first argument.

Providing the request parameters to a command like this is pretty trivial. Listing 4-25
shows an example form.

Listing 4-25. Providing a Form to Populate the Data

<g:form url="[controller: 'album', action: 'save'] ">
 Title: <input type="text" name="title" />

 Artist: <input type="text" name="artist" />

 Song 1: <input type="text" name="songs[0]" />

 Song 2: <input type="text" name="songs[1]" />

 ...
</g:form>

You’ll probably want to make the input of the songs dynamic using some JavaScript, but
nevertheless you can see the concept in Listing 4-25. Once you’ve given the user the ability to
enter data and you’re capturing said data using the command object, all you need to do is
validate it. Listing 4-26 shows how the save action’s logic might look with the command
object in use.

Listing 4-26. Using the Command Object for Validation

def save = { AlbumCreateCommand cmd ->
 if(cmd.validate()) {
 def album = cmd.createAlbum()
 album.save()
 redirect(action:"show", id:album.id)
 }
 else {
 render(view:"create", model:[cmd:cmd])
 }
}

As you can see, it’s now the command object that is ensuring the validity of the request,
and we’re using it as a factory to construct a perfectly valid Album instance. As with domain
classes, command objects have an Errors object, so you can use the <g:renderErrors> tag to
display validation errors to the user:

<g:renderErrors bean="{cmd}" />

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 85

Imposing HTTP Method Restrictions
Often a web application needs to impose restrictions on which HTTP request methods are
allowed for a specific controller action. For example, it is generally considered a bad idea for
a controller action to carry out any destructive operation in response to an HTTP GET. Such
operations should be limited to HTTP POST or DELETE.

Implementing an Imperative Solution
One approach to dealing with this concern is for a controller action to inspect the request
method and prevent certain actions from being carried out in response to an inappropriate
HTTP request method. Listing 4-27 shows a simple imperative approach to the problem.

Listing 4-27. Inspecting the HTTP Request Method in a Controller Action

class SongController {
 def delete = {
 if(request.method == "GET") {
 // do not delete in response to a GET request
 // redirect to the list action
 redirect(action: "list")
 } else {
 // carry out the delete here...
 }
 }
}

While this approach is fairly straightforward and does get the job done, it’s a tedious
solution to the problem. In a real-world application, this same logic would appear in many
controller actions.

Taking Advantage of a Declarative Syntax
A better solution to limiting actions to certain HTTP request methods is to take advantage of a
simple declarative syntax that expresses which HTTP request methods are valid for a particular
controller action. Grails supports an approach like this through the optional allowedMethods
property in a controller.

The allowedMethods property expresses which HTTP request methods are valid for any
particular controller action. By default, all HTTP request methods are considered valid for
any particular controller action. If you want an action to be accessible through specific
request methods only, then you should include the action in the allowedMethods property.

You should assign the allowedMethods property a value that is a map. The keys in the
map should be the names of actions that you want restricted. The value(s) associated with
the keys should be a String representing a specific request method or a list of Strings repre-
senting all allowed methods for that particular action. Listing 4-28 shows an example.

86 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Listing 4-28. Restricting Access to Controller Actions Using the allowedMethods Property

class SomeController {
 // action1 may be invoked via a POST
 // action2 has no restrictions
 // action3 may be invoked via a POST or DELETE
 def allowedMethods = [action1:'POST', action3:['POST', 'DELETE']]
 def action1 = { ... }
 def action2 = { ... }
 def action3 = { ... }
}

If the rules expressed in the allowedMethods property are violated, the framework will deny
the request and return a 405 error code, which the HTTP specification defines as “Method Not
Allowed.”

Controller IO
As you’ve learned so far, controllers can control request flow through redirects and rendering
views. In addition to this, controllers might need to read and write binary input to and from the
client. In this section, we’ll look at how to read data, including file uploads, and how to write
binary responses to the client.

Handling File Uploads
One of the more common use cases when developing web applications is to allow the user to
upload a local file to the server using a multipart request. This is where Grails’ solid foundation
of Spring MVC starts to shine through.

Spring has excellent support for handling file uploads via an extension to the
servlet API’s HttpServletRequest interface called org.springframework.web.multipart.
MultipartHttpServletRequest, the definition of which is in Listing 4-29.

Listing 4-29. The org.springframework.web.multipart.MultipartHttpServletRequest Interface

interface MultipartHttpServletRequest extends HttpServletRequest {
 public MultipartFile getFile(String name);
 public Map getFileMap();
 public Iterator getFileNames();
}

As you can see, the MultipartHttpServletRequest interface simply extends the default
HttpServletRequest interface to provide useful methods to work with files in the request.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 87

Working with Multipart Requests

Essentially, whenever a multipart request is detected, a request object that implements the
MultipartHttpServletRequest interface is present in the controller instance. This provides
access to the methods seen in Listing 4-30 to access files uploaded in a multipart request.
Listing 4-30 also shows how you can define a multipart form using the <g:uploadForm> tag.

Listing 4-30. An Example Upload Form

<g:uploadForm action="upload">
 <input type="file" name="myFile" />
 <input type="submit" value="Upload! " />
</g:uploadForm>

The important bits are highlighted in bold, but an upload form essentially requires
two things:

• A <form> tag with the enctype attribute set to the value multipart/form-data. The
<g:uploadForm> in Listing 4-30 does this for you automatically.

• An <input> tag whose type attribute is set to the value file.

In the previous case, the name of the file input is myFile; this is crucial because
it’s the named reference that you work with when using the getFile method of the
MultipartHttpServletRequest interface. For example, the code within an upload action
will retrieve the uploaded file from the request (see Listing 4-31).

Listing 4-31. Retrieving the Uploaded File

def upload = {
 def file = request.getFile('myFile')
 // do something with the file
}

Note that the getFile method does not return a java.io.File, but instead returns an
instance of org.springframework.web.multipart.MultipartFile, the interface detailed in
Listing 4-32. If the file is not found in the request, the getFile method will return null.

Listing 4-32. The org.springframework.web.multipart.MultipartFile Interface

interface MultipartFile {
 public byte[] getBytes();
 public String getContentType();
 public java.io.InputStream getInputStream();
 public String getName();
 public String getOriginalFilename();
 public long getSize();
 public boolean isEmpty();
 public void transferTo(java.io.File dest);
}

88 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Many useful methods are defined in the MultipartFile interface. Potential use cases
include the following:

• Use the getSize() method to allow uploads only of certain file sizes.

• Reject empty files using the isEmpty() method.

• Read the file as a java.io.InputStream using the getInputStream() method.

• Allow only certain file types to be uploaded using the getContentType() method.

• Transfer the file onto the server using the transferTo(dest) method.

As an example, the code in Listing 4-33 will upload a file to the server if it’s not empty and
if it’s fewer than 1,024 bytes in size.

Listing 4-33. File Uploads in Action

def upload = {
 def file = request.getFile('myFile')
 if(file && !file.empty && file.size < 1024) {
 file.transferTo(new java.io.File("/local/server/path/${file.name}"))
 }
}

Working directly with a MultipartHttpServletRequest instance is one way to manage file
uploads, but frequently you need to read the contents of a file. In the next section, we’ll look at
how Grails makes this easier through data binding.

Uploads and Data Binding

In the “Performing Data Binding” section, you saw how Grails handles automatic type conver-
sion from strings to other common Java types. What we didn’t discuss is how this capability
extends to file uploads. Grails, through Spring MVC, will automatically bind files uploaded to
properties of domain-class instances based on the following rules:

• If the target property is a byte[], the file’s bytes will be bound.

• If the target property is a String, the file’s contents as a string will be bound.

Suppose you want to allow users of the gTunes application to upload album art for each
album. By adding a new property to the Album domain class called art of type byte[], you auto-
matically have the capability to save the image data to the database, as shown in Listing 4-34.

Listing 4-34. Adding the Picture Property

class Album{
 byte[] art
 ...
}

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 89

To bind an uploaded file, you simply need to add an art upload field that matches the art
property name to a <g:uploadForm> tag:

<input type="file" name="art" />

The following line automatically handles binding the file to the s:

def user = new Album(params)

Grails will automatically recognize the request as being multipart, retrieve the file, and
bind the bytes that make up the file to the art byte array property of the Album class. This capa-
bility also extends to usage in conjunction with the properties property and bindData method
discussed previously.

Reading the Request InputStream
The way in which you read the body of an incoming request depends very much on the content
type of the request. For example, if the incoming request is an XML request, the parsing is han-
dled automatically for you. We’ll cover this subject further in Chapter 15.

However, if you just want to get the text contained within the request body, you can use
the inputStream property of the request object as shown in Listing 4-35.

Listing 4-35. Reading the Request Body

def readText = {
 def text = request.inputStream.text
 render "You sent $text"
}

Writing a Binary Response
You can send a binary response to the client using standard servlet API calls such as the exam-
ple in Listing 4-36, which uses the HttpServletResponse object to output binary data to the
response in the form of a ZIP file.

Listing 4-36. Writing Binary Data to the Response

def createZip = {
 byte[] zip = ... // create the zip from some source
 response.contentType = "application/octet-stream"
 response.outputStream << zip
 response.outputSream.flush()
}

The code uses the response object’s outputStream property in conjunction with Groovy’s
overloaded left shift << operator, which is present in a number of objects that output or append
to something such as java.io.Writer and java.lang.StringBuffer, to name just a couple.

90 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Using Simple Interceptors
Frequently, it is useful to catch the flow of method execution by intercepting calls to certain
methods. This concept is the foundation of Aspect-Oriented Programming (AOP), which
allows the definition of “pointcuts” (execution points) to be intercepted. You can then modify
the intercepted execution through the use of before, after, and around “advice.”

As the names suggest, before advice in AOP is code that can be executed before an inter-
cepted method call; after advice is code that can be executed after an intercepted method call.
Around advice is code that can replace the method call entirely. AOP’s great strength is provid-
ing support for implementing cross-cutting concerns.

The example frequently used for this concept is the logging of method calls. Although
Grails’ interception mechanism by no means provides the same power and flexibility in terms
of what pointcuts can be intercepted, it does fulfill the basic need of intercepting calls to
actions on controllers.

Additionally, interceptors are useful if they apply only to a single controller. If your
requirement spans multiple controllers, you’re better off having a look at Filters (a topic cov-
ered in Chapter 14). With interceptors you can either intercept all actions or provide more
fine-grained control by specifying which actions should be intercepted. Let’s look at a few
examples, starting with before interceptors.

Before Advice
Luckily, as with the rest of Grails, there is no hefty XML configuration or annotation trickery
required, thanks to Convention over Configuration. All it takes to define a before interceptor is
to create a closure property named beforeInterceptor within the target controller, as shown in
Listing 4-37.

Listing 4-37. A beforeInterceptor

def beforeInterceptor = {
 log.trace("Executing action $actionName with params $params")
}

Listing 4-37 uses the log object to output tracing information before any action within the
defining controller is executed. This example applies to every action defined in the controller.
However, you can apply more fine-grained control using interception conditions.

As an example, say you wanted to trace each time a user views an Album and each user’s
country of residence. You could define a beforeInterceptor as shown in Listing 4-38.

Listing 4-38. Using Interception Conditions

class AlbumController {
 private trackCountry = {
 def country = request.locale.country
 def album = Album.get(params.id)
 new AlbumVisit(country:country, album:album).save()
 }

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 91

 def beforeInterceptor = [action:trackCountry, only: "show"]
 ...
}

As you can see from Listing 4-38, you can define a beforeInterceptor using a map literal.
The action key defines the code that should execute. In this case, we’re using an only condi-
tion, which means that the interceptor applies only to the show action. You could change this to
an except condition, in which case the interceptor would apply to all actions except the show
action.

Finally, a beforeInterceptor can also halt execution of an action by returning false. For
example, if you want to allow only U.S. visitors to your site, you could send a 403 forbidden
HTTP code if the user hails from outside the U.S. (see Listing 4-39).

Listing 4-39. Halting Execution with a beforeInterceptor

class AlbumController {
 def beforeInterceptor = {
if(request.locale != Locale.US) {

 response.sendError 403
 return false
 }
 }
}

After Advice
After advice is defined using the unsurprisingly named afterInterceptor property that again
takes a closure. The first argument passed to the closure is the resulting model from the action,
as shown in Listing 4-40.

Listing 4-40. An afterInterceptor Example

def afterInterceptor = { model ->
 log.trace("Executed action $actionName which resulted in model: $model")
}

Again, in this rather trivial example, the logging mechanism traces any action that exe-
cutes.

Testing Controllers
Grails provides a special ControllerUnitTestCase class that you can use to test controllers.
Tests that extend from ControllerUnitTestCase are provided with mock implementations of
the various Servlet API objects, such as the HttpServletRequest, as well as mock implementa-
tions of key methods such as render and redirect.

92 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

As an example, the AlbumController class as it stands has no test coverage. To create a
test for this controller, you need create a new test class that follows the naming convention for
the controller under test. For example, you can create a test for the AlbumController with the
create-unit-test command:

grails create-unit-test com.g2one.gtunes.AlbumController

This will create a new unit test called AlbumControllerTests at the location test/unit/com/
g2one/gtunes/AlbumControllerTests.groovy. Now you need to modify the test class to extend
from the ControllerUnitTestCase test harness, as shown in Listing 4-41.

Listing 4-41. Using ControllerUnitTestCase

class AlbumControllerTests extends grails.test.ControllerUnitTestCase {
 ...
}

The ControllerUnitTestCase class extends from the parent GrailsUnitTestCase,
which contains general mocking capabilities plus utility methods that enable you to mock
the behavior of domain classes and controllers. For example, to test the list action of the
AlbumController, you can write a trivial test that takes advantage of the mockDomain method
(see Listing 4-42).

Listing 4-42. Mocking a Simple Action That Returns a Model

void testList() {
 mockDomain(Album, [new Album(title: "Odelay"),
 new Album(title: "Abbey Road"])
 def model = controller.list()
 assertEquals 2, model.albumList.size()
}

In Listing 4-42, we’re testing the returned model, but some controller actions write
directly to the response or issue a redirect rather than return a value. To test an action that
writes to the response, you can use the response object of the controller, which is an instance
of the org.springframework.mock.web.MockHttpServletResponse class.

Several useful methods in the MockHttpServletResponse class allow you to inspect the state
of the current response. In particular, the getContentAsString() method provides access to
what is currently written into the response as a String. For example, if you have an action that
renders some text to the response, you could test it as shown in Listing 4-43.

Listing 4-43. Testing the Contents of the Response

void testIndex() {
 controller.index()
 assertEquals "Welcome to the gTunes store!",
 controller.response.contentAsString
}

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 93

For more complex usages of the render method, such as rendering a view and so on, you
can use the renderArgs property of the ControllerUnitTestCase class, which provides a map of
the named parameters given to the render method that executed last. For example, say you
have a render method that renders a view with a model such as:

render(view: "show", model:[album:Album.get(params.id)])

You can test this code using the renderArgs property and mock the domain as shown in
Listing 4-44.

Listing 4-44. Testing the render Method

void testShow() {
 mockDomain(Album, new Album(id:1, title: "Aha Shake Heartbreak"))
 mockParams.id = 1
 controller.show()
 assertEquals "show", renderArgs.view
 assertEquals 1, renderArgs.model.album.id
 assertEquals "Aha Shake Heartbreak", renderArgs.model.album.title
}

Notice the usage in Listing 4-44 of the ControllerUnitTestCase class’s mockParams prop-
erty. This property provides a mock implementation of the params object that you can populate
with values before calling the controller. In addition to a mock implementation of the params
object, the ControllerUnitTestCase class provides the following properties that mock various
aspects of the controller API:

• mockRequest: An instance of the org.springframework.mock.web.MockHttpServletRequest
class that mocks the request object

• mockResponse: An instance of the org.springframework.mock.web.MockHttpServletResponse
class that mocks the response object

• mockSession: An instance of the org.springframework.mock.web.MockHttpSession that
provides a mock implementation of the session object

• mockParams: A simple map that mocks the behavior of the params object

• mockFlash: A simple map that mocks the behavior of the flash object

Additionally, you can test the redirect method as you test the render method, using the pro-
vided redirectArgs property of the ControllerUnitTestCase class. You’ll see more examples of
testing as we progress through the book, but in the meantime, let’s exercise your new knowledge
of controllers by implementing the gTunes application’s first bit of real functionality.

Controllers in Action
In this section, you’ll learn how to build a simple login and registration system using Grails
controllers. In Chapter 14, we’ll be refactoring this system to use one of Grails’ more generic
security plugins, but for the moment it will serve as a useful starting point.

94 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

One of the first things to consider when developing any site is the point of entry into the
site. At the moment, you’ve just created a bunch of scaffolded pages, but now it’s time to think
about the real application for the first time, starting with the home page.

Creating the gTunes Home Page
The gTunes application is a music store where users can log in, browse the available music,
and purchase music that they can then play. First, you need to establish a home page. You
already have a StoreController, so you can use that as the controller that deals with the home
page. To make sure visitors get routed to this controller, you can modify the grails-app/conf/
UrlMappings.groovy file to map visitors to the root of the application to this controller (see
Listing 4-45).

Listing 4-45. Routing Users to the Root of the Application to the StoreController

class UrlMappings {
 static mappings = {
 "/"(controller:"store")
 }
}

Notice how you can use a forward slash to tell Grails to map any request to the root of the
application to the StoreController. As you can see from the mapping, it is not mapping onto
any particular action in StoreController, which will trigger the default action. The default
action is the index action, which currently writes out a simple-text response. You need to
change the index action so view delegation kicks in:

def index = {}

Now instead of returning a textual response, the index action delegates to the grails-app/
views/store/index.gsp view, which you can use to render the home page. We’ll start with
something simple that just shows a welcome message; we can expand on this later. Listing 4-46
shows the markup code involved.

Listing 4-46. The gTunes Home Page

<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="layout" content="main">
 <title>gTunes Store</title>
 </head>
 <body id="body">
 <h1>Your online music store and storage service!</h1>
 <p>Manage your own library, browse music and purchase new tracks as they
 become available</p>
 </body>
</html>

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 95

The next step is to consider how to enable users to register, log in, and log out. Before you
can do that, you need to define the notion of a user within the gTunes application. Let’s do that
in the next section.

Adding the User Domain Class
To model users, you’ll need to create a User domain class that contains personal information
such as first name and last name, as well as the login and password for each user. To do so, you
can use the create-domain-class command:

grails create-domain-class com.g2one.gtunes.User

This will create a new domain class at the location grails-app/domain/com/g2one/gtunes/
User.groovy. With that done, you need to populate the User domain class with a few properties,
as shown in Listing 4-47.

Listing 4-47. The User Domain Class

package com.g2one.gtunes
class User {
 String login
 String password
 String firstName
 String lastName
 static hasMany = [purchasedSongs:Song]
}

As you can see, the code in Listing 4-47 captures only the basics about users, but you could
easily expand this information to include an address, contact number, and so on. One property
to note is the purchasedSongs association, which will hold references to all the Songs a User buys
once you have implemented music purchasing.

However, before we get too far ahead of ourselves, let’s add a few constraints to ensure
domain instances stay in a valid state (see Listing 4-48).

Listing 4-48. Applying Constraints to the User Class

class User {
 ...
 static constraints = {
 login blank:false, size:5..15,matches:/[\S]+/, unique:true
 password blank:false, size:5..15,matches:/[\S]+/
 firstName blank:false
 lastName blank:false
 }
}

With these constraints in place, you can ensure that a user cannot enter blank values or
values that don’t fall within the necessary size constraints. Also, note the usage of the unique

96 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

constraint, which ensures that the login property is unique to each User. We’ll revisit this in
more detail later; for now, let’s focus on login and registration.

Adding a Login Form
Because you already have a home page, it might make sense to add the login form there. But fur-
ther down the line, you’ll want to allow users to browse the gTunes music catalog anonymously,
so users should be able to log in from anywhere. With this in mind, you need to add a login form
to the grails-app/views/layouts/main.gsp layout so that it’s available on every page.

Listing 4-49 shows the GSP code to do so. Note how you can check whether a User already
exists in the session object and display a welcome box or login form, accordingly.

Listing 4-49. Adding the Login Form Everywhere

<div id="loginBox" class="loginBox">
 <g:if test="${session?.user}">
 <div style="margin-top:20px">
 <div style="float:right;">
 Profile |
 <g:link controller="user" action="logout">Logout</g:link>

 </div>

 Welcome back
 ${session?.user?.firstName}!

 You have purchased (${session.user.purchasedSongs?.size() ?: 0}) songs.

 </div>
 </g:if>
 <g:else>
 <g:form
 name="loginForm"
 url="[controller:'user',action:'login']">
 <div>Username:</div>
 <g:textField name="login" ></g:textField>
 <div>Password:</div>
 <g:passwordField name="password" />
 <input type="submit" value="Login" />
 </g:form>
 <g:renderErrors bean="${loginCmd}"></g:renderErrors>
 </g:else>
</div>

In addition to providing a login box, you need to provide a link that allows a User to regis-
ter. Once logged in, the user will be able to click through the store to browse and click a “My
Music” link to view music already purchased. These links won’t display when the user isn’t
logged in, so instead you can use the screen real estate for a prominent link to the registration
page. Listing 4-50 shows the registration link added to the main.gsp layout.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 97

Listing 4-50. Adding a Link to the Registration Page

<div id="navPane">
 <g:if test="${session.user}">

 <g:link controller="user" action="music">My Music</g:link>
 <g:link controller="store" action="shop">The Store</g:link>

 </g:if>
 <g:else>
 <div id="registerPane">
 Need an account?
 <g:link controller="user" action="register">Signup now</g:link>
 to start your own personal Music collection!
 </div>
 </g:else>
</div>

After getting the web designers involved and making a few Cascading Style Sheets (CSS)
tweaks, the home page has gone from zero to something a little more respectable (see Figure 4-3).

Figure 4-3. The gTunes home page

Implementing Registration
Before users can actually log in, they need to register with the site. You’ll need to run the
create-controller command to create a controller that will handle the site’s login and regis-
tration logic:

grails create-controller com.g2one.gtunes.User

Once complete, the command will create a controller at the location grails-app/
controllers/com/g2one/gtunes/UserController.groovy. Open up this controller and
add a register action, as shown in Listing 4-51.

98 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Listing 4-51. Adding a register Action

class UserController {
 def register = {}
}

As you can see from the example, the register action currently does nothing beyond
delegating to a view. Nevertheless, it gives you the opportunity to craft a registration form.
Listing 4-52 shows the shortened code from the grails-app/views/user/register.gsp view
that will render the form.

Listing 4-52. The register View

<body id="body">
 <h1>Registration</h1>
 <p>Complete the form below to create an account!</p>
 <g:hasErrors bean="${user}">
 <div class="errors">
 <g:renderErrors bean="${user}"></g:renderErrors>
 </div>
 </g:hasErrors>

 <g:form action="register" name="registerForm">
 <div class="formField">
 <label for="login">Login:</label>
 <g:textField name="login" value="${user?.login}" />
 </div>
 <div class="formField">
 <label for="password">Password:</label>
 <g:passwordField name="password"
 value="${user?.password}"/>
 </div>
 ...
 <g:submitButton class="formButton"
 name="register"
 value="Register" />
 </g:form>
</body>

The rendered registration form will look like the screenshot in Figure 4-4.
As you can see from Figure 4-4, you can also provide a confirm-password field to prevent

users from entering their passwords incorrectly. With that done, let’s consider the controller
logic. To implement registration, you can take advantage of Grails’ data-binding capabilities to
bind incoming request parameters to a new User instance. At this point, validation takes over
and the rest comes down to a little branching logic. Listing 4-53 shows the completed register
action.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 99

Figure 4-4. The Registration screen

Listing 4-53. Implementing the register Action

1 def register = {
2 if(request.method == 'POST') {
3 def u = new User(params)
4 if(u.password != params.confirm) {
5 u.errors.rejectValue("password", "user.password.dontmatch")
6 return [user:u]
7 }
8 else if(u.save()) {
9 session.user = u
10 redirect(controller:"store")
11 }
12 else {
13 return [user:u]
14 }
15 }
16 }

Many of the key concepts you’ve learned throughout the course of this chapter have been
put to use in Listing 4-53, including a few new ones. Let’s step through the code to see what’s
going on. First, on line 2, the code checks that the incoming request is a POST request because
doing all this processing is pointless unless a form is submitted:

2 if(request.method == 'POST') {

Then on line 3, data binding takes over as it binds the incoming request parameters to the
User instance:

3 def u = new User(params)

100 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

On lines 4 though 7, the code confirms whether the user has entered the correct password
twice. If not, the password is rejected altogether:

4 if(u.password != params.confirm) {
5 u.errors.rejectValue("password", "user.password.dontmatch")
6 return [user:u]
7 }

Note how calling the rejectValue method of the org.springframework.validation.
Errors interface accomplishes this. The rejectValue method accepts two arguments: the
name of the field to reject and an error code to use. The code in Listing 4-53 uses the String
user.password.dontmatch as the error code, which will appear when the <g:renderErrors>
tag kicks in to display the errors. If you want to provide a better error message, you can open
up the grails-app/i18n/messages.properties file and add a message like this:

user.password.dontmatch=The passwords specified don't match

Here’s one final thing to note: directly after the call to rejectValue, a model from the
controller action is returned, which triggers the rendering register.gsp so it can display
the error.

Moving on to lines 8 through 11, you’ll notice that the code attempts to persist the User
by calling the save() method. If the attempt is successful, the User is redirected back to the
StoreController:

8 else if(u.save()) {
9 session.user = u
10 redirect(controller:"store")
11 }

Finally, if a validation error does occur as a result of calling save(), then on line 13 a simple
model is returned from the register action so that the register view can render the errors:

13 return [user:u]

Testing the Registration Code
Now let’s consider how to test the action using the ControllerUnitTestCase class you
learned about earlier. When you ran the create-controller command, a new unit test for
the UserController was created for you in the test/unit directory.

You’ll notice that the UserControllerTests class extends from a super class called
ControllerUnitTestCase:

class UserControllerTests extends grails.test.ControllerUnitTestCase {

Now write a test for the case in which a user enters passwords that don’t match.
Listing 4-54 shows the testPasswordsDontMatch case that checks whether a password mis-
match triggers a validation error.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 101

Listing 4-54. The testPasswordsMatch Test Case

void testPasswordsMatch() {
 mockRequest.method = 'POST'
 mockDomain(User)

 mockParams.login = "joebloggs"
 mockParams.password = "password"
 mockParams.confirm = "different"
 mockParams.firstName = "Joe"
 mockParams.lastName = "Blogs"

 def model = controller.register()

 assert model?.user
 def user = model.user
 assert user.hasErrors()
 assertEquals "user.password.dontmatch", user.errors.password
}

Notice how the testPasswordsMatch test case populates the mockParams object with two
passwords that differ. Then you have a call to the register action, which should reject the new
User instance with a user.password.dontmatch error code. The last line of the test asserts that
this is the case by inspecting the errors object on the User instance:

assertEquals "user.password.dontmatch", user.errors.password

The next scenario to consider is when a user enters invalid data into the registration form.
You might need multiple tests that check for different kinds of data entered. Remember, you
can never write too many tests! As an example of one potential scenario, Listing 4-55 shows a
test that checks whether the user enters blank data or no data.

Listing 4-55. The testRegistrationFailed Test

void testRegistrationFailed() {
 mockRequest.method = 'POST'

 mockDomain(User)

 mockParams.login = ""
 def model = controller.register()

102 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

 assertNull mockSession.user
 assert model
 def user = model.user
 assert user.hasErrors()
 assertEquals "blank", user.errors.login
 assertEquals "nullable", user.errors.password
 assertEquals "nullable",
 user.errors.firstName
 assertEquals "nullable", user.errors.firstName
}

Once again, you can see the use of the errors object to inspect that the appropriate
constraints have been violated. Finally, you need to ensure two things to test a successful
registration:

• The User instance has been placed in the session object.

• The request has been redirected appropriately.

Listing 4-56 shows an example of a test case that tests a successful user registration.

Listing 4-56. Testing Successful Registration

void testRegistrationSuccess() {
 mockRequest.method = 'POST'
 mockDomain(User)

 mockParams.login = "joebloggs"
 mockParams.password = "password"
 mockParams.confirm = "password"
 mockParams.firstName = "Joe"
 mockParams.lastName = "Blogs"

 def model = controller.register()
 assertEquals 'store',redirectArgs.controller
 assertNotNull mockSession.user
}

With the tests written, let’s now consider how to allow users to log in to the gTunes
application.

Allowing Users to Log In
Since you’ve already added the login form, all you need to do is implement the controller logic.
A login process is a good candidate for a command object because it involves capturing infor-
mation—the login and password—without needing to actually persist the data.

In this example you’re going to create a LoginCommand that encapsulates the login logic, leav-
ing the controller action to do the simple stuff. Listing 4-57 shows the code for the LoginCommand
class, which is defined in the same file as the UserController class.

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 103

Listing 4-57. The LoginCommand

class LoginCommand {
 String login
 String password
 private u
 User getUser() {
 if(!u && login)
 u = User.findByLogin(login, [fetch:[purchasedSongs:'join']])
 return u
 }
 static constraints = {
 login blank:false, validator:{ val, cmd ->
 if(!cmd.user)
 return "user.not.found"
 }
 password blank:false, validator:{ val, cmd ->
 if(cmd.user && cmd.user.password != val)
 return "user.password.invalid"
 }
 }
}

The LoginCommand defines two properties that capture request parameters called login and
password. The main logic of the code, however, is in the constraints definition. First, the blank
constraint ensures that the login and/or password cannot be left blank. Second, a custom val-
idator on the login parameter checks whether the user exists:

login blank:false, validator:{ val, cmd ->
 if(!cmd.user)
 return "user.not.found"
}

The custom validator constraint takes a closure that receives two arguments: the value
and the LoginCommand instance. The code within the closure calls the getUser() method of
the LoginCommand to check if the User exists. If the User doesn’t exist, the code returns an error
code—“user.not.found”—that signifies an error has occurred.

On the password parameter, another custom validator constraint checks whether the User
has specified the correct password:

password blank:false, validator:{ val, cmd ->
 if(cmd.user && cmd.user.password != val)
 return "user.password.invalid"
}

Here the validator again uses the getUser() method of the LoginCommand to compare
the password of the actual User instance with the value of the password property held by the
LoginCommand. If the password is not correct, an error code is returned, triggering an error. You

104 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

can add appropriate messages for each of the custom errors returned by the LoginCommand by
adding them to the grails-app/i18n/messages.properties file:

user.not.found=User not found
user.password.invalid=Incorrect password

With that done, it’s time to put the LoginCommand to use by implementing the login action
in the UserController. Listing 4-58 shows the code for the login action.

Listing 4-58. The login Action

def login = { LoginCommand cmd ->
 if(request.method == 'POST') {
 if(!cmd.hasErrors()) {
 session.user = cmd.getUser()
 redirect(controller:'store')
 }
 else {
 render(view:'/store/index', model:[loginCmd:cmd])
 }
 }
 else {
 render(view:'/store/index')
 }
}

With the command object in place, the controller simply needs to do is what it does best:
issue redirects and render views. Again, like the register action, login processing kicks in only
when a POST request is received. Then if the command object has no errors, the user is placed
into the session and the request is redirected to the StoreController.

Testing the Login Process
Testing the login action differs slightly from testing the register action due to the involvement
of the command object. Let’s look at a few scenarios that need to be tested. First, you need to
test the case when a user is not found (see Listing 4-59).

Listing 4-59. The testLoginUserNotFound Test Case

void testLoginUserNotFound() {
 mockRequest.method = 'POST'
 mockDomain(User)
 MockUtils.prepareForConstraintsTests(LoginCommand)
 def cmd = new LoginCommand(login:"fred", password:"letmein")
 cmd.validate()
 controller.login(cmd)

C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S 105

 assertTrue cmd.hasErrors()
 assertEquals "user.not.found", cmd.errors.login
 assertEquals "/store/index", renderArgs.view
}

As you can see from Listing 4-59, when testing command objects you have to explicitly
create the command and call the validate() method on it. Notice also how you can use the
prepareForConstraintsTests method of the grails.test.MockUtils class to mock the valida-
tion behavior of a command object:

MockUtils.prepareForConstraintsTests(LoginCommand)

You can the inspect the command for errors as demonstrated by the following two lines
from Listing 4-59:

assertTrue cmd.hasErrors()
assertEquals "user.not.found", cmd.errors.login

The next scenario to test is when a user enters an incorrect password. Listing 4-60 shows
the testLoginPasswordInvalid test case that demonstrates how to do this.

Listing 4-60. The testLoginPasswordInvalid Test Case

void testLoginPasswordInvalid() {
 mockRequest.method = 'POST'
 mockDomain(User, [new User(login:"fred", password:"realpassword")])
 MockUtils.prepareForConstraintsTests(LoginCommand)
 def cmd = new LoginCommand(login:"fred", password:"letmein")
 cmd.validate()
 controller.login(cmd)
 assertTrue cmd.hasErrors()
 assertEquals "user.password.invalid", cmd.errors.password
 assertEquals "/store/index", renderArgs.view
}

Unlike the example in Listing 4-59, the testLoginPasswordInvalid test case actually pro-
vides mock data using the mockDomain method:

mockDomain(User, [new User(login:"fred", password:"realpassword")])

The second argument of the mockDomain method provides the data that all the query
methods should operate on. In this case, the code specifies a mock User instance that has a
password with the value of “realpassword.” Then you can use the LoginCommand to simulate
the entry of an incorrect password:

def cmd = new LoginCommand(login:"fred", password:"letmein")

The remainder of the test is largely similar to Listing 4-59.
The last test to write is one that tests a successful login. Listing 4-61 shows how to do this.

106 C H A P T E R 4 ■ U N D E R S T A N D I N G C O N T R O L L E R S

Listing 4-61. The testLoginSuccess Test Case

void testLoginSuccess() {
 mockRequest.method = 'POST'
 mockDomain(User, [new User(login:"fred", password:"letmein")])
 MockUtils.prepareForConstraintsTests(LoginCommand)
 def cmd = new LoginCommand(login:"fred", password:"letmein")
 cmd.validate()
 controller.login(cmd)
 assertFalse cmd.hasErrors()
 assertNotNull mockSession.user
 assertEquals "store", redirectArgs.controller
}

The testLoginSuccess test case again uses the mockDomain method to set up the domain
model, and then uses an appropriate LoginCommand to simulate a valid login. As you can see
from the last two assertions, you can use the mockSession object to check whether the User
instance has been placed in the session and inspect redirectArgs to ensure that an appropriate
redirect has occurred.

Summary
And with that, you’ve implemented the login and registration process for the gTunes applica-
tion. We’ll present throughout the book many more examples of using controllers, but in this
chapter you’ve obtained a strong grounding in the core concepts that apply to controllers.

From data binding and validation to command objects, Grails’ controller mechanism
offers you a lot of tools. To fully see how everything fits together, you’ll need a strong under-
standing of Grails’ view technology—Groovy Server Pages (GSP). In the next chapter, we’ll take
a much closer look at GSP and what it has to offer, with its dynamic tag libraries and templating
mechanisms.

107

■ ■ ■

C H A P T E R 5

Understanding Views

View technologies for web applications in the open source world appear to be a rather popular
topic with the seemingly endless number of them available for Java. There always appears to be
a newer, better one to learn if you grow tired of the incumbent JSP. JSP, however, remains the
most popular view technology; produced by Sun to compete with Microsoft’s Active Server Pages
(ASP), JSP has become the industry standard, and there is a high level of developer knowledge
surrounding JSP.

JSP allows developers to mix traditional markup languages such as HTML with Java code
(called scriptlets) to produce dynamic output. On the downside, this facility is extremely open
to abuse; therefore, there are custom tag libraries that add the ability to abstract logic from a
JSP page via tags. JSP has been augmented with two missing ingredients, the JSP Standard Tag
Library (JSTL) and an expression language (EL), to bring it up to speed with some of its open
source competitors.

So, given JSP’s maturity, robustness, and familiarity within the industry, why on Earth
would you need yet another view technology for Grails with Groovy Server Pages (GSP)? The
answer lies with the Groovy runtime environment:

• To fully take advantage of Grails, the view technology requires knowledge of Groovy’s
runtime environment and associated dynamic method dispatching.

• Groovy provides a far more powerful expression language, including GPath expres-
sions, Groovy bean notation, and overridable operators.

• Other Groovy features such as regular expression support, GStrings, and an expressive
syntax for maps and lists make it perfect for a view technology.

Of course, for any new view technology, it is important not to fall into the same traps that
JSP fell into in its early iterations. Mixing scriptlets and markup code is most definitely recog-
nized as a bad thing, and to this end, GSP provides a mechanism for creating custom tags just
as JSP does but without sacrificing any agility.

The Basics
You’ve already been exposed to GSP at various points throughout the book, and we’re sure you
are verging on the expert level already. Regardless, it will no doubt prove invaluable to discuss
the basics of GSP to help you fully grasp all the concepts within it.

It is important to note that GSP is actually remarkably similar to JSP, and you will know
from experience that with JSP, by default, a number of objects are simply available. These

108 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

include the request, response, and session objects—the same ones you saw in Chapter 4,
which discussed controllers. If you recall, that particular discussion mentioned that a few
additional objects are available to controllers, including the flash object. Well, you’ll be
pleased to know these can also be accessed from GSP views, as can an additional out attribute,
which is a java.io.Writer instance representing the response output. Table 5-1 describes the
GSP attributes available.

You already know how to get to these from controllers, but what about in views? Well,
unsurprisingly, GSP supports the same constructs available in JSP as well as a few additional
ones. This may start to look a little like a JSP 101 tutorial in the next few examples, but don’t be
confused; you’re definitely dealing with Groovy, not Java.

Understanding the Model
One of the fundamental activities in any MVC pattern, such as that which Grails employs, is to
pass information (the model) to the view for rendering. In Chapter 4 you saw this in action, but
just to recap, Listing 5-1 shows an example of how you can achieve this in Grails.

Listing 5-1. Creating the Model

package com.g2one.gtunes

class StoreController {

 def shop = {
 def genreList = Album.withCriteria {
 projections {
 distinct "genre"
 }
 }
 [genres:genreList.sort()]
 }
}

Table 5-1. GSP Attributes

Attribute Description

application The ServletContext instance

flash The flash object for working with flash scope, as discussed in Chapter 7

out The response Writer instance

params A map of request parameters

request The HttpServletRequest instance

response The HttpServletResponse instance

session The HttpSession instance

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 109

In the previous listing (the shop action of the StoreController), the result is a map with one
element, the key for which is a string with the value genres. This key (and its value) is then
placed in a GSP’s model (or binding for those more familiar with Groovy lingo), which means it
is accessible as a variable in the same way as the page attributes you saw earlier in Table 5-1.

In the following sections, you will see examples of a genres variable being referenced. Just
remember that this variable didn’t appear by magic. It is passed to the view via the controller
in code like in the previous listing.

Page Directives
GSP supports a limited subset of the page directives available in JSP. A page directive is an
instruction that appears at the top of a GSP that performs an action that the page relies on.
As an example, it could set the content type, perform an import, or set a page property, which
could even be container-specific.

One of the more useful of these is the contentType directive, which allows you to set the
content type of the response. This is useful in that it allows you to use GSP to output formats
other than HTML markup, such as XML or plain text. Using the directive is identical to JSP,
with the directive appearing at the top of the page and starting with <%@.

Listing 5-2 sets the content type to text/xml, which allows you to output XML; this can be
useful when working with technologies such as Ajax.

Listing 5-2. The contentType Page Directive

<%@ page contentType="text/xml; charset=UTF-8" %>

Another page directive available is the import directive, which is analogous to the import
statement in a Java or Groovy class. However, because Groovy imports many classes by default
and Grails encourages an MVC architecture, where much of the logic should be placed in a
controller and not the view, the usage of import is not too common. Nevertheless, Listing 5-3
shows an example of importing the Time class from the java.sql.* package.

Listing 5-3. The import Page Directive

<%@ page import="java.sql.Time" %>

■Note Groovy imports the java.lang, java.util, java.io, java.net, groovy.lang, and
groovy.util packages by default.

Groovy Scriptlets
GSP tries to stay as true to JSP as possible, and therefore it supports traditional JSP scriptlet
blocks using the <%...%> syntax. Essentially, as soon as you type the opening <% declaration,
you have entered the world of Groovy and can type whatever Groovy code you so choose up
until the closing %> declaration.

110 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

What this means is that you can use scriptlets to perform loops and logical if statements
merely by combining scriptlet declarations, as shown in Listing 5-4.

Listing 5-4. Scriptlets in Action

<html>
 <body>
 <% 3.times { %>
 <p>I'm printed three times!</p>
 <% } %>
 </body>
</html>

This type of syntax will be familiar to users of Rails, because it bears a striking resemblance
to Rails’ view technology RHTML (and indeed many other view technologies). However, you
should note that scriptlets are available more to align the syntax with JSP and, in practice, are
discouraged in favor of GSP tags, which you will see in the section “Built-in Grails Tags.”

Although the previous syntax allows arbitrary code to be inserted between the opening
and closing declarations, it doesn’t actually explicitly output anything when inside the scriptlet
block. In other words, as with the previous example, you have to use a closing %> bracket to
close the scriptlet expression in order to define what you want repeated three times. You can,
however, use the out attribute mentioned earlier to output to the response:

<% out << "print me!" %>

The previous code will print the text “print me!” to the response using the out attribute.
As you can imagine, having all these out << statements all over the place can get a little tedious,
so GSP supports another syntax inherited from JSP through the <%=...%> statement (note the
equal sign directly after the opening declaration). Essentially, the following example is equiva-
lent to what you saw in the previous code:

<%= "print me!" %>

Here the = sign after the opening scriptlet bracket ensures that the result of whatever
follows is printed to the response. The response in general is a mix of markup and code that
results in some text being sent to the browser or client. Now that you’ve seen GSP’s similarities
with JSP, let’s look at a feature you won’t find in JSP: embedded GStrings.

GSP as GStrings
In recent times, since the introduction of JSTL, using scriptlets and declarations such as those
shown in the previous section has been looked down on a bit. Instead, there is an expression
language in JSP that you can use in combination with the <c:out> standard tag to output val-
ues, as shown in Listing 5-5.

Listing 5-5. JSP c:out Tag

<%-- Output the album title --%>
<p><c:out value="${album.title}" /></p>

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 111

■Tip The previous JSP example uses the syntax <%--...--%> for comments that should not be present in
the rendered response. These comments are also supported in GSP using the same syntax.

In addition to the previous rather verbose tag, you would also need to import the tag
library, which contains the <c:out> tag using a page directive at the top of the JSP. All this
amounts to a lot of effort just to use a tag that lets you render values to the response. Luckily,
with GSP it is a little bit simpler, because of its support for embedded GString values:

<p>${album.title}</p>

A GSP, if you think about it, is essentially one big GString, thus allowing the same ${...}
expressions nested within it as found in JSP. The expressions allowed within the GStrings are
not, thankfully, limited to simply referencing properties. The full capability Groovy offers in
terms of navigating object graphs is at your fingertips, which often becomes useful when iter-
ating, as you will see in the next section.

Built-in Grails Tags
GSP has a number of built-in tags for performing basic operations such as looping, switching,
and using logical if statements. In general, tags are preferable to embedding scriptlets because
they promote a cleaner separation of concerns and allow you to create well-formed markup.

Each GSP tag requires the prefix g: before the tag name so that it is recognized as being a
GSP tag. Unlike JSP, which requires directives to import tag libraries, no additional page direc-
tive is needed.

■Note GSP also supports JSP custom tag libraries that can be imported with the standard JSP taglib
directive.

In the next few sections, you’ll see the tags that are built in to Grails. These tags are there
by default and require no extra work by the developer.

Setting Variables with Tags
Occasionally, it is useful to set the value of a variable or define a new variable within the scope
(commonly referred to as the page context) of a GSP. Both use cases can be achieved via the
<g:set> tag, which will set or define a variable in the page context regardless of whether it
already exists. The <g:set> tag takes two attributes: the var attribute, which defines the name
of the variable to set, and a value attribute, which is generally an expression:

<g:set var="albumTitle" value="${album.title}" />

112 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

By default, variables set with <g:set> are assumed to be within the page scope. Having said
that, you can set a variable in the session scope simply by using the scope attribute:

<g:set scope="session" var="user" value="${user}" />

In addition to the session scope, a number of other scopes are available:

• application: Stores variables for the scope of the whole application

• session: Stores variables for the scope of the user session

• flash: Stores variables for the current request and the next request only

• request: Stores variables for the scope of the current request

• page: Stores variables for the scope of the rendering page

Another fairly basic requirement, along with setting variables, is the ability to condition-
ally display information. In the next section, you’ll see how you can achieve this.

Logical Tags
As previously mentioned, it is often useful to display information based on a condition. At the
most basic level, it is useful to have basic programming constructs in the view such as if and
else to facilitate this. GSP has the aptly named <g:if>, <g:elseif>, and <g:else> tags that, as
with any regular programming construct, are used in conjunction with one another to condi-
tionally display output.

The <g:if> and <g:elseif> tags take an attribute called test whose value can be in expres-
sion language (that is, statements surrounded by ${..}), as shown in Listing 5-6.

Listing 5-6. Usage of Logical Blocks

<g:if test="${album?.year < 1980 && album?.genre == 'Rock'}">
 Classic rock
</g:if>
<g:elseif test="${album?.year >= 1980 && album?.genre == 'Rock'}">
 Modern Rock
</g:elseif>
<g:else>
 Other
</g:else>

An interesting aspect of the previous code is the usage of Groovy’s safe dereference oper-
ator, ?.. The operator really comes into its own when used in views, because it is often useful to
navigate an object graph and display information only if all elements navigated through don’t
evaluate to null. If you look at the views generated during scaffolding, you will observe a lot of
this in action. Yet another useful feature of the method is that it allows the optional execution
of methods. For example, you may for some reason want the title of the album in uppercase, in
which case you would use an expression like the following:

${album.title.toUpperCase()}

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 113

Unfortunately, if either the album or title of the album in the previous code is null, a horrid
NullPointerException will be thrown. To circumvent this, the safe dereference operator comes
to the rescue:

${album?.title?.toUpperCase()}

Here the toUpperCase method is executed only if it can be reached; otherwise, the entire
expression evaluates to null. This is useful because null in GSP results in an empty string being
printed to the response.

That’s it for now on logical tags, although you will see their usage popping up throughout
the book.

Iterative Tags
Iterating over collections of objects is one of the more common tasks when working with any
view technology, GSP being no exception. Again, scriptlets could be used to achieve iteration,
but why would you? You have GSP tags, which allow for a much cleaner transition between
code and markup.

The first tag we’ll cover is the <g:each> tag, which is essentially the tag equivalent of the Groovy
each method and in fact simply delegates to this method internally, as shown in Listing 5-7.

Listing 5-7. Iterating with <g:each>

<g:each in="${album.songs?}">
 ${it.title}
</g:each>

■Tip You can also use the safe dereference operator at the end of expressions as in the previous example,
which will not iterate if the songs property is null.

Like its closely related JSTL cousin, the <g:each> tag allows you to optionally specify
the name of the object within the current iteration. The name of the object, as with closures,
defaults to an argument called it, as shown in Listing 5-7. When using nested tags, however,
it is good practice to name the variable being iterated over, which you can do with the var
attribute, as shown in Listing 5-8.

Listing 5-8. Iterating with <g:each> and a Named Variable

<g:each var="song" in="${album.songs?}">
 ${song.title}
</g:each>

GSP tags are, at their roots, just closures, and in Groovy the variable it refers to the default
argument of the innermost closure. If you use the <g:each> tag without declaring a var attribute
and try to reference the default it variable within a nested GSP tag, this will result in evaluating
it to the current innermost tag and not the surrounding <g:each> tag. By naming the variable

114 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

used by <g:each> using the var attribute, you circumvent any conflicts such as this. If you
remember that GSP tags are closures, you will have no issue at all adapting to the mind-set.

The next iterative tag GSP provides is the <g:while> tag that behaves like the traditional
while loop by waiting for the expression specified within the test attribute to evaluate to false.
As with any while loop, the condition should always end up evaluating to false at some point;
otherwise, you will end up in a never-ending loop. Listing 5-9 shows an example that loops
while the variable i is greater than zero.

Listing 5-9. The <g:while> Tag

<g:set var="i" expr="${album.songs?.size()}" />
<g:while test="${i > 0}">
 <g:set var="i" expr="${i-1}" />
</g:while>

Here you get the total number of songs from the album and store them in the variable i. You
then start a <g:while> loop that will decrement the i variable on each iteration. The loop will
continue until i reaches zero. The loop is equivalent to the following Groovy code:

while(i > 0) i=i-1

Using <g:each> and <g:while> are not the only way to loop over a collection. In the next
section, you’ll see constructs that provide the powerful combination of filtering and iteration.

Filtering and Iteration
With some of the new methods that accept closures in Groovy that provide the powerful ability
to filter and search collections (such as collect, findAll, and grep), it would seem a shame if
that power were not extended into GSP tags. Fear not—there are tag equivalents of these three
that allow some pretty powerful filtering capabilities.

The collect Tag

The <g:collect> tag allows you to iterate over and collect properties of objects within a col-
lection. Say, for example, you want the titles of all albums; you can achieve this simply with
<g:collect>, as shown in Listing 5-10.

Listing 5-10. Using <g:collect> to Collect Values

 <g:collect in="${albums}" expr="${it.title}">
 ${it}
 </g:collect>

In the previous example, an HTML list of album titles is created by passing a collection
of albums to the in attribute via the ${...} syntax. The second attribute, the expr attribute,
contains an expression that is used to specify what should be collected (in this case the title
property). Again, you use the default it argument within the expression the same way as you
would in a closure. In fact, the previous code is equivalent to the scriptlet code in Listing 5-11.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 115

Listing 5-11. Equivalent Scriptlet Using a Closure

 <% albums.collect{ it.title }.each { %>
 ${it}
 <%}%>

As you can see, the expression equates to what is found within the curly braces of the
collect closure. Whatever you can place in there can also be placed inside the expr attribute.

Of course, you could also do this with a GPath expression. If you recall what you learned
about GPath so far, if you reference the title property and use the dereference operator on a
list of albums, it will produce a list of titles, as shown in Listing 5-12.

Listing 5-12. Using GPath to Iterate Over Album Titles

 <g:each in="${albums.title}" >
 ${it}
 </g:each>

The <g:collect> tag does, however, give you another option and allows the logic within
the expr attribute to be in your control.

The findAll Tag

Collecting properties from a collection via the object graph is handy, but sometimes you want
to iterate over only those values that meet a certain criteria. This is often achieved by iterating
over all elements and having nested if statements. However, using <g:findAll>, as shown in
Listing 5-13, is far more elegant.

Listing 5-13. Using <g:findAll> to Locate Specific Elements

<g:findAll in="${albums}" expr="${it.songs?.title.contains('Love')}">

 ${it.title}

</g:findAll>

This is an interesting example because it is another demonstration of the power of GPath,
Groovy’s expression language. The expression in bold references the default argument it,
which is the current Album instance being iterated over, and then uses GPath to retrieve a col-
lection of all the names of the songs.

The songs property itself is in fact a collection too (a java.util.Set to be specific) and does
not have a title property, but GPath recognizes that the reference to the title property is an
attempt to retrieve a collection of name properties from the contained elements within the
songs property.

116 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

Since the result is a collection, you can invoke the regular JDK contains method to look up
all albums that have the world Love in their title. The result is far more readable than a bunch
of nested if statements and is another case where you can see how a Groovy view technology
like GSP just makes a remarkable amount of sense.

You’ve seen quite a few options to perform different kinds of logical statements and itera-
tion. Controlling the logical flow of a view is not, however, the only task you have when writing
the view. One common activity is linking between controllers and actions, which you will look
at next; but before that, there is something important to note. This marks the end of the built-
in tags. The tags you’ve seen so far are internally handled and optimized by GSP. The next sec-
tion shifts focus to Grails dynamic tags and how they differ from the built-in tags.

Grails Dynamic Tags
Dynamic tags in Grails are those provided through classes called tag libraries, which can be
found within the grails-app/taglib directory of any Grails project. Grails provides a number
of tag libraries out of the box that you will see in the next few sections; then you will explore
how to create your own tag libraries.

First you need to understand what makes dynamic tags different from other tags besides
the fact that they are provided by these libraries. Fundamentally, they can be used the same
way as any other tag. For example, you can use the <g:link> tag like the built-in tags you saw
previously without requiring any import directive.

More interestingly, dynamic tags can also be invoked as methods from scriptlets and
GString expressions. Why is this useful? To maintain a clean syntax and valid XML, it is best
to avoid nesting tags within tag attributes. In JSP you often see code like in Listing 5-14 that
becomes difficult to read and is not well-formed markup.

Listing 5-14. Unattractive JSP Example

<a href="<c:out value="${application.contextPath}" />/show.jsp">A dynamic link

Clearly, because of GSP’s rather JSP-like nature, this problem could have been inherited if
it were not for the dynamic nature of Groovy. So, how would you invoke a GSP tag as a method
call? Observe the example in Listing 5-15.

Listing 5-15. An Example of a GSP Tag as a Method Call

<!-- With a regular tag -->
<a href="<g:createLink action="list" />">A dynamic link

<!-- As a method call -->
A dynamic link

The two previous examples produce the same result. They call a tag called createLink,
which creates a link to the list action. The second example is notably cleaner and produces
well-formed markup. In addition, the body of the tag can be provided as the last argument to
the method call.

You can see an example of this in action in the create and edit views generated by scaffolding.
As part of form validation, these views highlight the problematic field by surrounding the offender

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 117

with a red box. You achieve this through the hasErrors tags, which will evaluate if a particular bean
field has any validation errors and will set a CSS class, the name of which is the last argument on the
surrounding div element if the field does contain errors, as shown in Listing 5-16.

Listing 5-16. Field Validation Example

<div class="${hasErrors(bean:album,field:'title','errors')}">
 ...
</div>

These are just a few examples; as you’ll see in a moment, you can create your own tags that
can be invoked in the same manner. First, however, let’s take a tour through the tags that are
already available to you, starting with linking.

Linking Tags
With all these controllers and actions that end up being created, it may become a bit chal-
lenging to remember the URL patterns to link to them. Also, the context path of your
application could change depending which environment you deploy to. So, how can you
make sure you are always linking to the right place in a consistent manner? Well, luckily
Grails provides a number of tags to handle linking in an elegant way, the first of which is
the aptly named <g:link>.

The Link Tag

The <g:link> tag will essentially create a simple HTML anchor tag based on the supplied
attributes, which include the following:

• controller: The controller name to link to

• action: The action name to link to

• id: The identifier to append to the end of the URI

• params: Any parameters to pass as a map

One of either the controller attribute or the action attribute is required. If the controller
attribute is specified but no action attribute is specified, the tag will link to the default action of
the controller. If, on the other hand, an action attribute is specified but no controller attribute
is specified, the currently executing controller will be linked to.

Beyond the previous attributes, the <g:link> tag also supports all attributes that the regu-
lar HTML anchor tag supports, which can be added as required.

It’s time for some examples. Using <g:link> is pretty trivial and intuitive, and of course the
values of the attributes could just as well be expressions of the ${...} kind if dynamic linking is
required, as shown in Listing 5-17.

Listing 5-17. Basic Linking with <g:link>

<g:link controller="album" action="list">List Albums</g:link>
<g:link action="show" id="1">Show album with id 1</g:link>

118 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

Of interest may be the params attribute, which takes a map of request parameters to pass
via the link. In fact, the current request parameters can even be passed from one action to the
other by using this attribute in combination with the params object, which if you recall is an
instance of java.util.Map, as shown in Listing 5-18.

Listing 5-18. Using Parameters with <g:link>

<g:link controller="album"
 action="list"
 params="[max:10,order:'title']">Show first ten ordered by Title</g:link>

<g:link action="create"
 params="${params}">Pass parameters from this action to next</g:link>

The first example uses the params attribute in conjunction with a map of parameters and
provides your first exposure to another feature of GSP tags: attributes can be specified as maps
with the [key:value] syntax. This allows for composite attribute values and minimizes the
need for messy nested tags.

Finally, the second example demonstrates what was mentioned previously. Instead of
specifying a map explicitly, you provide a reference to the params object via the ${...} expres-
sion syntax, which then allows passing parameters from the current page to the linked page.
Next you’ll see how to create links to other resources.

■Note Grails’ linking tags automatically rewrite the links based on the URL mappings you have defined.
URL mappings will be covered in more detail in Chapter 6.

The createLink and createLinkTo Tags

The <g:createLink> tag has already been seen in action and probably needs less of an intro-
duction. Simply put, if it’s not clear from the examples, <g:createLink> takes the same
arguments as the <g:link> tag except it produces just the textual link and not an HTML
anchor tag. In fact, the <g:link> tag actually delegates to <g:createLink> when creating its
href attribute.

So, what is this useful for? You could use it within a regular anchor tag or possibly as a
value for a JavaScript variable, as shown in Listing 5-19.

Listing 5-19. Examples of createLink

List Albums
<script type="text/javascript">
 var listAlbumsLink = "${createLink(action:'list')}";
</script>

Another tag, similar in both name and usage to <g:createLink>, is the <g:createLinkTo>
tag, which allows convenient linking to resources within the web application’s context path.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 119

This tag is most commonly used for linking to images and style sheets and again can be seen in
action in the views generated by scaffolding:

<link rel="stylesheet" href="${createLinkTo(dir:'css',file:'main.css')}"></link>

As is apparent from the previous examples and in Listing 5-19, both tags tend to be used
via method calls as opposed to markup, because the values produced by them are usually
nested within attributes of other tags.

Now that we’ve covered linking, another common activity is to create forms so that users
can enter data to be captured by server-side code. In the following section, you’ll see how
Grails makes this easier.

Creating Forms and Fields
A form is most commonly a collection of fields that a user populates with data, although
occasionally you find forms that consist entirely of hidden fields and no user interaction
whatsoever. Nevertheless, how this is achieved depends on the type of field; in other words,
the user interacts differently depending on whether it is a text field, a drop-down select, or a
radio button.

Clearly, certain fields map nicely onto existing Java (and hence Groovy) types. Check boxes
are great for Boolean values, text fields are good for strings, and selects are good when you have
strings that can be contained only within a certain list of values (such as enums in Java 5).

To this end, most Java web frameworks provide some mechanism to make form elements
(or fields) interoperate smoothly with Java types, Grails being no different. Before you get too
deeply involved in looking at the different kinds of fields, let’s take care of the basics by looking
at how Grails helps in defining forms.

The form Tag

Building on what you have seen in linking, the first tag you are going to look at is the <g:form>
tag, which is equivalent to the standard HTML <form> tag, except it allows the same arguments
as those shown with the <g:link> tag to allow easy submission to a specific controller and/or
action, as shown in Listing 5-20.

Listing 5-20. An Example Form Tag from grails-app/views/user/register.gsp

<g:form action="register" name="registerForm">
 ...
</g:form>

By default, the <g:form> tag uses the POST method for form submissions, meaning the pre-
vious example is roughly equivalent to the HTML definition (minus the closing tag):

<form action="/gTunes/user/register" method="POST" name="registerForm">
 ...
</form>

120 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

As an alternative to Listing 5-20, you can define the <g:form> tag using a single url
attribute that uses the key:value map syntax to define the controller and action combination,
as shown in Listing 5-21.

Listing 5-21. A <g:form> Tag with url Attribute

<g:form url="[controller:'user', action:'register']">
 ...
</g:form>

Of course, a form is of little use without some fields, the first of which to be discussed is the
text field. In HTML, most fields are handled by the <input> tag, which has a type attribute to
change its behavior and appearance. The downside of this approach is that it is not clear what
its purpose is from simply looking at the tag.

Grails provides a number of wrapper tags that encapsulate the different types of HTML
inputs into more meaningful tags.

The textField Tag

First up is the <g:textField> tag that, unsurprisingly, handles entry of textual values. The
<g:textField> tag takes a name attribute, representing the name of the parameter to send as
part of the form submission, along with the associated value attribute, as shown in Listing 5-22.

Listing 5-22. Example <g:textField> Usage

<g:form action="register" name="registerForm">
 ...
 <g:textField name="login" value="${user?.login}"></g:textField>
 ...
</g:form>

The previous <g:textField> definition will result in HTML input such as the following:

<input type="text" name="login" value="A Login Name" />

Check Boxes and Radio Buttons

Check boxes are often used as a representation of Boolean values from a domain model. Unfor-
tunately, many frameworks place a lot of burden on the developer both to render check boxes
in their correct state and to handle the server-side processing as to whether the check boxes are
checked.

Grails, on the other hand, provides a <g:checkBox> tag that accepts a Boolean value
attribute and will render the tag in its correct state. In addition, Grails transparently handles
check box processing through its automatic type conversion and data binding facility (dis-
cussed in Chapter 7), as shown in Listing 5-23.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 121

Listing 5-23. Example <g:checkBox> Tag

<g:checkBox name="aBooleanValue" value="${true}" />

Closely related to check boxes are radio buttons, which are used in groups, because they
represent a one-from-many interaction. For example, two radio buttons must each be given
the same name to be placed in the same group, and only one button can be selected at any
one time.

Grails has a <g:radio> tag that provides a convenient way to define radio buttons and also
to calculate that one has been checked.

In Listing 5-24, two radio buttons are defined in the same group. The one that has been
checked is calculated using the hypothetical someValue variable.

Listing 5-24. Example <g:radio> Tags

<p>
 <g:radio name="myGroup" value="1" checked="${someValue == 1}" /> Radio 1
</p>
<p>
 <g:radio name="myGroup" value="2" checked="${someValue == 2}" /> Radio 2
</p>

Handling Lists of Values

When dealing with enumerated values (those that can be only a specific set of values), it is often
useful to constrain what the user can enter by presenting an HTML select box as opposed to a
free text-entry field.

To make creating selects much simpler, Grails provides a <g:select> tag that accepts a list
or range of values via a from attribute. The currently selected value can be set with the value
attribute.

The example in Listing 5-25 creates a select to choose a genre.

 Listing 5-25. Example <g:select> Usage

<g:select name="genre" from="${['Rock', 'Blues', 'Jazz']}"
 value="${album.genre}" />

The following is the resulting HTML select, given an album with a genre of Rock:

<select name="genre">
 <option value="Rock" selected="selected">Rock</option>
 <option value="Blues">Blues</option>
 <option value="Jazz">Jazz</option>
</select>

Clearly, just going by the two examples, using the <g:select> tag can save you from writing
a few lines of code. Its usefulness extends beyond this thanks to two additional attributes that
allow <g:select> to be used in combination with object graphs and relationships.

122 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

The first is the optionKey attribute, which allows customization of the value attribute within
each option tag of an HTML select. This may seem a little odd that an optionKey attribute cus-
tomizes an attribute called value, but if you think of each <option> element as a key/value pair, it
begins to make sense. The optionValue attribute, on the other hand, allows customization of the
value that appears within the body of each option tag.

Using these two in combination can, for example, allow you to create a select from a list of
domain object instances, as shown in Listing 5-26.

Listing 5-26. Using <g:select> on a List of Domain Objects

<g:select name="album.id" from="${Album.list()}"
 optionKey="id" optionValue="title"/>

The previous example takes a list of albums and creates an HTML select where the value
attribute within the option tag is the id of the Album and the value within the body of each option
is the title property of each Album. The result will resemble something like the following:

<select name="album.id">
 <option value="1">Undertow</option>
 ...
</select>

In addition to the general-purpose <g:select> tag, Grails provides a few others that may
come in handy. The <g:currencySelect>, <g:localeSelect>, and <g:timeZoneSelect> tags are
convenience tags for working with java.util.Currency, java.util.Locale, and java.util.
TimeZone instances, respectively.

Unlike the <g:select> tag, each of these takes only two attributes: a name attribute for the
name of the select and a value attribute, which takes an instance of one of the aforementioned
classes, as shown in Listing 5-27.

Listing 5-27. Currency, Locale, and Time Zone Selects

<%-- Sets the currency to the currency of the Locale within the request --%>
<g:currencySelect
 name="myCurrency"
 value="${ Currency.getInstance(request.locale) }" />

<%-- Sets the locale to the locale of the request --%>
<g:localeSelect name="myLocale" value="${ request.locale }" />

<%-- Sets value to default time zone --%>
<g:timeZoneSelect name="myTimeZone" value="${ TimeZone.getDefault() }" />

Working with Dates

Dates can be represented in a number of ways, from drop-down selects to advanced JavaScript
calendars. One of the more common ways, because of its nonreliance on JavaScript, is to use a

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 123

combination of HTML select boxes to specify the date or time, with each select representing
a unit of time: year, month, day, minute, hour, and second.

Grails provides support for creating such fields (and automatically performing type con-
version onto date instances) using the <g:datePicker> tag, as shown in Listing 5-28.

Listing 5-28. A Basic Date Picker

<g:datePicker name="myDate" value="${new Date()}" />

At its most basic level, the <g:datePicker> tag takes a name attribute and a value attribute
as a java.util.Date instance. In the previous example, it creates a <g:datePicker> for the cur-
rent time, which consists of selects for the year, month, day, minute, hour, and second.

Clearly, it is not always useful to have that level of precision, so the <g:datePicker> tag
provides the aptly named precision attribute for changing how many selects it renders. For
example, to render only the year, month, and day selects, the following will suffice:

<g:datePicker name="myDate" value="${new Date()}" precision="day" />

All in all, Grails provides quite a few tools in your toolbox for simplifying the creation of
forms. Given that forms allow users to enter data, often in a free-form fashion, implementing
form handling is often one of the most challenging and error-prone activities in web applica-
tion development.

To ensure data integrity, form validation is necessary and can be achieved on the client
side using JavaScript. However, client-side validation should only ever be seen as a usability
enhancement and not a replacement for server-side validation. Luckily, Grails provides solid
support for performing validation with specialized validation and error-handling tags.

Validation and Error Handling
Having learned how to apply constraints to your domain model in Chapter 3, clearly it becomes
useful at some point to display validation errors in the view when they occur. Of course, you
could use scriptlets to iterate over the errors of a domain object and output them explicitly, but
that’s an awful lot of work that Grails can do for you. Just to recap how validation works, take a
look at the state diagram shown in Figure 5-1.

Figure 5-1. Validation state diagram

124 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

The hasErrors Tag

It is often useful to conditionally display information depending on whether there is an error.
To this end, Grails provides a <g:hasErrors> tag that supports the following attributes:

• bean: A bean instance to inspect for errors

• field: The name of the field to check for errors

• model: An alternative to specifying a bean; an entire model (map) can be checked

If you recall, you have already seen the <g:hasErrors> tag used as a method, but it is also
equally applicable as a tag. Interestingly, if no attributes are specified whatsoever, the tag will
scan the entire request scope for beans and check each object found for errors. Since the
<g:hasErrors> tag is often used in conjunction with <g:eachError>, we’ll cover that next, fol-
lowed by an example.

The eachError Tag

If a bean instance does have errors, it is useful to iterate over them and display each in turn.
This can be done simply with the <g:eachError> tag, which takes attributes identical to those
expected by the <g:hasErrors> tag.

Listing 5-29 demonstrates how to use the hasErrors and eachError tags to generate a list of
error messages for an Album instance.

Listing 5-29. Displaying Errors

<g:hasErrors bean="${album}">
 <ul class="errors">
 <g:eachError bean="${album}">
 ${it.defaultMessage}
 </g:eachError>

</g:hasErrors>

In this instance, <g:hasErrors> checks whether there are any errors in the first place and,
if there are, creates an HTML list. These errors are then iterated over via the <g:eachError> tag,
which creates the list bullets using the default message. The default messages for validation
errors can be found in the grails-app/i18n/message.properties message bundle.

If a list is all that is required, Grails makes it even easier to display errors via the
<g:renderErrors> tag, which encapsulates everything you’ve just seen. Essentially, it
takes the same arguments as the <g:eachError> tag, as well as an optional as attribute,
which allows you to specify what to render the errors as. Listing 5-29 shows how to render
the errors as a simple HTML list:

<g:renderErrors bean="${album}" as="list" />

As noted previously, the examples shown so far use the default message. Clearly, the default
message is not always what is desired, and it is often useful to provide specific messages for each
property within a domain class. This is where the <g:message> tag comes into play with Grails’
support for internationalization (i18n). Internationalization is covered in detail in Chapter 7.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 125

Paginating Views
Rendering lists of data in a web application is a common thing to do. Grails provides an easy-
to-use mechanism for retrieving data from the database (GORM) and simple mechanisms for
rendering the data (GSPs and GSP tags).

Web applications often serve as a front end to a database that may contain large volumes
of data. The application may need to provide mechanisms for the user to manage navigating
through those large volumes of data. For example, the gTunes application may contain thou-
sands of artists, albums, and songs. A page that lists all the albums may be overwhelming and
difficult for the user to work with, as shown in Figure 5-2.

Figure 5-2. A long list of albums

Figure 5-2 represents what the user might see if they requested a list of all the albums in
the system that belong to the Rock genre. As you can see from the scrollbar on the right, this is
a very long page. The page includes several hundred albums. An argument could be made that
this is too much data to display on a single page. What if there were thousands of albums? What
if there were hundreds of thousands of albums? Clearly, it would not make sense to present all
those albums to the user on a single page.

The gTunes application needs to be smart about presenting manageable lists of data to the
user. Instead of displaying hundreds or thousands of albums in a single list, maybe the appli-
cation should display only five or ten. If the application displays only five or ten albums on the

126 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

page, then the application also needs to provide a mechanism for the user to navigate around
the larger virtual list to view the rest of the albums five or ten at a time.

Figure 5-3 represents a much more manageable interface.

Figure 5-3. A paginated list of albums

The list in Figure 5-3 includes only ten albums. The view provides mechanisms for navi-
gating over the larger virtual list, which includes all the albums in this genre. This approach
yields a much better user experience, especially for scenarios where the user may be over-
whelmed with large sets of data.

Some complexity is involved in generating pagination controls like this. The application
needs to retrieve smaller amounts of data from the database for each view. The application needs
to provide support for requesting the batch of records that fall immediately before the current
batch or immediately after the current batch. The application needs to provide a mechanism for
jumping straight to an area of the list, as opposed to navigating through the larger list a single
page at a time. The application needs to know the total number of records in the larger list. All of
that would normally involve writing a lot of code.

The good news is that Grails provides a really simple mechanism for managing all that.
That mechanism is a GSP tag called paginate. The paginate tag manages a lot of the tedious
work that would otherwise be required in order to provide UI elements for navigating over
large lists of data.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 127

The GSP responsible for rendering this list is in grails-app/views/store/genre.gsp. That
page includes the markup shown in Listing 5-30.

Listing 5-30. The genre.gsp

<h1>Online Store</h1>

<h2>Genre: ${genre.encodeAsHTML()}</h2>
<table border="0" class="albumsTable">
 <tr>
 <th>Artist</th>
 <th>Album</th>
 <th>Year</th>
 </tr>
 <g:each var="album" in="${albums}">
 <tr>
 <td>${album.artist.name}</td>
 <td><g:link action="show"
 controller="album"
 id="${album.id}">${album.title}</g:link>
 </td>
 <td>${album.year}</td>
 </tr>
 </g:each>

</table>
<div class="paginateButtons">
 <g:paginate controller="store"
 action="genre"
 params="[name:genre]"
 total="${totalAlbums}" />
</div>

The markup represented there renders an HTML table containing a header row and a row
for each of the elements in the albums collection. Notice the use of the paginate tag at the bot-
tom of Listing 5-30. That is all the code required in the GSP to render the pagination controls.
The paginate tag takes care of all the tedious work involved in generating the “Previous” and
“Next” links, all of the links that supporting jumping to a particular page, and all of the appro-
priate request parameters associated with each of those links. All of that is being handled by
this single call to a GSP tag—the whole thing could barely be any simpler!

The paginate tag is generating a number of links. The controller and action parameters tell
the paginate tag where each of those links should submit. In this particular case, all the links submit
to the genre action in the StoreController. If all the links reference the same controller action, you
might wonder how the application knows the difference between the user clicking one link vs.
another. The answer has to do with the fact that the paginate tag is tacking a number of request

128 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

parameters on the end of each link and those request parameters are used by the controller action.
For example, the “7” link points to the URL /store/genre?offset=60&max=10&name=Rock. The “8”
link points to the URL /store/genre?offset=70&max=10&name=Rock. Notice that each of those links
includes the same value for the max and name parameters, but they include a different value for the
offset parameter. That offset parameter is an important part of the request because that is how
the controller will know what page of data should be returned when the user clicks one of those
links. Let’s take a look at the relevant controller action.

Listing 5-31 includes the code that is in the genre action in the StoreController.

Listing 5-31. The genre action

def genre = {
 def max = Math.min(params.max?.toInteger() ?: 10, 100)
 def offset = params.offset?.toInteger() ?: 0

 def total = Album.countByGenre(params.name)
 def albumList = Album.withCriteria {
 eq 'genre', params.name
 projections {
 artist {
 order 'name'
 }
 }
 maxResults max
 firstResult offset
 }
 return [albums:albumList,
 totalAlbums:total,
 genre:params.name]
 }

■Note The previously shown query uses the Hibernate Criteria API. We’ll describe the general behavior of
the query next. The Criteria API is discussed in detail in the “Criteria Queries” section of Chapter 10.

The name request parameter is being used in both of the previous queries. The first query
is necessary to count the number of albums in the database that belong to a certain genre. The
second query is actually retrieving a list of albums. That second query is not retrieving all the
albums that belong to a certain genre but is retrieving a subset of at most ten of those albums.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 129

For example, imagine there is a list of 1,000 albums and each of those albums has an index
associated with it starting with 0 and running up through 999. When a request is sent to the
/store/genre?offset=60&max=10&name=Rock URL, the call to the Album.withCriteria(...)
method will return ten of those albums starting with the Album at index 60. The max parameter
represents the maximum number of albums that should be returned.

Notice that the first line in the genre action is assigning a default value of 10 to max if no max
request parameter is found. If a max request parameter is found and the value is greater than
100, the system is falling back to a max of 10. Displaying more than 100 albums per page would
defeat the purpose of having the pagination support in place.

The offset parameter represents what point in the larger list should this list of ten begin. If
no offset request parameter is supplied, the system is defaulting the value to 0 or the beginning
of the list.

The map of data being returned by the genre action includes not only the list of albums but
also includes values for totalAlbums and genre, each of which are used in genre.gsp as param-
eters to the paginate tag. All of this needs to be kept in sync as part of the interaction between
the controller action and the GSP.

The paginate tag supports a number of arguments. Table 5-2 lists those arguments.

All of the parameters supported by the paginate tag are optional except for the total
parameter.

The default scaffolded list views in a Grails application include support for paginating the
list. Define a simple domain class like the Car class shown in Listing 5-32.

Table 5-2. Arguments Supported by the paginate Tag

Argument Description

total Total number of elements in the larger list

controller Name of the controller to link to

action Name of the action to invoke

params Map of request parameters

offset Offset to be used if params.offset is not specified

max Maximum number of elements per page

prev Text for the “Previous” link

next Text for the “Next” link

id ID to use in links

maxsteps Number of steps displayed for pagination (the default is 10)

130 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

Listing 5-32. A Car Domain Class

class Car {
 String make
 String model
}

Generate scaffolding for the Car class, and you will see that the default list action in the
CarController and the default grails-app/view/car/list.gsp include support for paginating
the list of cars. Listing 5-33 shows the relevant part of the GSP.

Listing 5-33. grails-app/view/car/list.gsp

<div class="list">
 <table>
 <thead>
 <tr>
 <g:sortableColumn property="id" title="Id" />
 <g:sortableColumn property="make" title="Make" />
 <g:sortableColumn property="model" title="Model" />
 </tr>
 </thead>
 <tbody>
 <g:each in="${carInstanceList}" status="i" var="carInstance">
 <tr class="${(i % 2) == 0 ? 'odd' : 'even'}">
 <td>
 <g:link action="show"
 id="${carInstance.id}">
 ${fieldValue(bean:carInstance, field:'id')}
 </g:link>
 </td>
 <td>${fieldValue(bean:carInstance, field:'make')}</td>
 <td>${fieldValue(bean:carInstance, field:'model')}</td>
 </tr>
 </g:each>
 </tbody>
 </table>
</div>
<div class="paginateButtons">
 <g:paginate total="${Car.count()}" />
</div>

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 131

The only attribute specified in this call to the paginate tag is the required total attribute.
Notice that in this case the value of the total attribute is simply the total number of cars in the
database. This is a little bit different from the example shown earlier where the value of the
total attribute was not necessarily all the number of albums in the database but was the num-
ber of albums in the database that belong to a particular genre.

Listing 5-34 shows the list action in the CarController.

Listing 5-34. Pagination Support in the CarController

class CarController {

def list = {
 if(!params.max) params.max = 10
 [carInstanceList: Car.list(params)]
 }

 ...
}

The default list action in the CarController will assign a value of 10 to the max request
parameter if a value is not supplied.

The application may take control over the order of the cars using any number of tech-
niques supported by GORM. The simplest solution for this particular case is to include the
order clause in the dynamic method, as shown in Listing 5-35.

Listing 5-35. Ordering Cars By Model

class CarController {

 def list = {
 if(!params.max) params.max = 10
 [carInstanceList: Car.listOrderByModel (params)]
 }

 ...
}

With all of that in place, if the database includes more than ten cars, then the pagination
support in the view will kick in, as shown in Figure 5-4.

132 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

Figure 5-4. Paginating a list of cars

Rendering GSP Templates
A GSP template is a special GSP file that contains only a fragment of a page. A GSP template can
contain markup that is rendered from various places in an application in which case the tem-
plate would facilitate reuse. A template can be extracted from a page to simplify the containing
page by breaking it down into smaller, more manageable pieces. Whatever the reason for iso-
lating part of a page into a reusable template, Grails provides a really simple mechanism for
rendering the template.

A template can contain just about anything that might appear in a normal GSP. One thing
that makes a template special is its file name. GSP templates must be defined in a file whose
name begins with an underscore. For example, a template that represents a list of albums
might be defined in grails-app/views/album/_albumList.gsp.

The render tag can be used in a GSP to render a GSP template. The render tag accepts an
attribute called template that represents the name of the template to be rendered. For exam-
ple, to render the template in the grails-app/views/album/_albumList.gsp file, you would
specify /album/albumList as the value of the template attribute when calling the render tag, as
shown in Listing 5-36.

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 133

Listing 5-36. Rendering the albumList Template

<div id="artists">
 <g:render template="/artist/artistList"/>
</div>

Notice that the template file name contains an underscore, but the name of the template
does not.

Rendering a template in a GSP is very much like taking the contents of the GSP template
and putting them inline in the containing GSP in place of calling the render tag.

Figure 5-5 shows an updated version of the gTunes application.

Figure 5-5. Updated gTunes

Notice the three boxes on the right of the screen representing the latest albums, latest
songs, and newest artists. The markup required to generate each of those boxes would clutter
the GSP. Rather than embedding the markup for those boxes in the views/store/shop.gsp file,
you can pull all of that out into a series of templates and render those templates from shop.gsp.
Using templates to handle this will yield an easier-to-maintain application compared to an
application with monolithic unmodular GSPs.

Listing 5-37 shows what those templates might look like.

134 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

Listing 5-37. GSP Templates for the Top Five Lists

<!-- grails-app/views/artist/_artistList.gsp -->

 <g:each in="${artists}" var="artist">
 ${artist?.name}
 </g:each>

<!-- grails-app/views/album/_albumList.gsp -->

 <g:each in="${albums}" var="album">
 ${album.title}
 </g:each>

<!-- grails-app/views/song/_songList.gsp -->

 <g:each in="${songs}" var="song">
 ${song.title}
 </g:each>

■Note For now these are very simple templates that render unordered lists of strings. In Chapter 8 you will
evolve these templates to contain some really slick Ajax-driven behavior. At that point, the value of having iso-
lated this markup into templates will be even greater.

Notice that each of those templates is iterating over a different collection (artists, albums,
and songs). Those collections are data that must be passed into the template when the tem-
plate is rendered. The way to pass data into a GSP template is to specify an attribute called
model when calling the render tag. The value of the model attribute should be a map containing
all the data that is being passed in to the template. Listing 5-38 shows each of those templates
being rendered from the grails-app/views/store/shop.gsp and the appropriate data being
passed to each of the templates.

Listing 5-38. Rendering Templates from shop.gsp

<div id="top5Panel" class="top5Panel">
 <h2>Latest Albums</h2>
 <div id="albums" class="top5Item">
 <g:render template="/album/albumList"
 model="[albums: top5Albums]"/>
 </div>
 <h2>Latest Songs</h2>
 <div id="songs" class="top5Item">

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 135

 <g:render template="/song/songList"
 model="[songs: top5Songs]"/>
 </div>
 <h2>Newest Artists</h2>
 <div id="artists" class="top5Item">
 <g:render template="/artist/artistList"
 model="[artists: top5Artists]"/>
 </div>
</div>

The templates being rendered here are /album/albumList, /song/songList, and /artist/
artistList. Each of those is a fully qualified reference to a template. When a template name
is fully qualified like that, the root refers to the grails-app/views/ directory, so /artist/
artistList refers to the template defined in the grails-app/views/artist/_artistList.gsp
file. Template references may be defined with a relative path as well. Relative template paths
are paths that do not begin with a forward slash.

For example, if instead of referring to /artist/artistList the shop.gsp referred to the
relative artistList template, then Grails would look for the template in the same directory
where shop.gsp lives. Relative references can also include a directory structure. If the artistList
template were defined in grails-app/views/store/myTemplates/_artistList.gsp, then the
grails-app/views/store/shop.gsp page could refer to the template as myTemplates/artistList
since the myTemplates directory is in the same directory as shop.gsp.

Each of the calls to the earlier render tag includes a map of data being passed as the model
attribute. For shop.gsp to have that data, the controller action that rendered shop.gsp needs to
supply those values. In this case, the controller action is the shop action in StoreController, as
shown in Listing 5-39.

Listing 5-39. The shop Action in StoreController

package com.g2one.gtunes

class StoreController {

 def shop = {
 def genreList = Album.withCriteria {
 projections {
 distinct "genre"
 }
 }

 [top5Albums: Album.list(max:5, sort:"dateCreated", order:"desc"),
 top5Songs: Song.list(max:5, sort:"dateCreated", order:"desc"),
 top5Artists: Artist.list(max:5, sort:"dateCreated", order:"desc"),
 genres: genreList.sort()]
 }

 // ...
}

136 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

Notice that the controller action is returning values for albums, songs, and artists. The val-
ues are lists containing the five most recently created albums, songs, and artists.

These templates have been defined to render these “Top 5” lists in the shop.gsp, but they
are reusable templates that can be used anywhere that the application needs to render lists of
albums, artists, or songs. It is commonplace for web applications to render the same pieces of
information on a lot of pages. When you see the same elements showing up in multiple places,
consider pulling that markup out of your GSPs and putting it in a reusable template.

Creating Custom Tags
Custom tags in JSP are a wonderfully powerful feature. They provide the ability to cleanly sep-
arate concerns between the view and controller logic. In MVC terms, you can think of them as
view helpers. Unfortunately, for all their wonderful attributes they are tremendously compli-
cated to develop. The reasons for this are understandable, because JSP tags attempt to account
for every possible tag creation scenario including the following:

• Simple tags that have attributes only and no body

• Body tags that have both attributes and a body

• Tags that have parent-child relationships between one another

• Nested tags and a complete API for finding tag ancestors

The implication, however, is that the API for creating JSP custom tags is robust, to say the
least. To compound matters, additional information is required about the tag in a tag library
descriptor (TLD) file that is loaded on application startup. This makes tags difficult to reload
without a server restart, because the application server utilizes this file to configure the tag
library. As you can imagine, all this is not very agile and is rather a complete contradiction to
the code-by-convention approach.

From a user’s perspective, developers rarely go to the effort of creating tags themselves, and
typically the ones used tend to be those provided by the frameworks and specifications, such as
JSTL. This is rather a shame, because the concept is sound, though the implementation is not.

So, what can Grails and, more specifically, GSP provide to make creating tags simpler?
Clearly, supporting every tag type under the sun would result in a complicated API, much like
that in JSP. In reality, the most commonly used tags can be broken down into three categories:

• Simple tags: Tags that have attributes but no body

• Logical tags: Those that have a body that executes conditionally

• Iterative tags: Tags that loop and execute the body of the tag one or more times

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 137

You will find that the majority of tags you come across fall into one of the previous catego-
ries. Since Grails is all about making the common cases simple, creating a simplified API for
these tag types seems only logical. The question is, why create a new API at all? This is where
Groovy and the power of closures start to shine.

Creating a Tag Library
Having already seen quite a few Grails tags throughout this discussion, it may well be that
you’ve already browsed the source and have become familiar with what a Grails tag is all about.
Regardless, it is important to understand how to create a tag library from scratch.

It is generally good practice to place tags inside a library that encapsulate their general
function, kind of like a package does in Java.

A tag library is quite simply a class that ends with the convention TagLib in the class name
and resides snugly in the grails-app/taglib directory. Like the other Grails artifacts you’ve
seen, a convenience target exists for creating tag libraries. To create a new tag library for the
gTunes application, you can run the grails create-taglib target and type gtunes, as shown in
Listing 5-40.

Listing 5-40. Creating the Gtunes Tag Library

$ grails create-taglib

init-props:

create-taglib:
 [input] Enter tag library name:
Gtunes
 [copy] Copying 1 file to /Developer/grails-apps/gtunes/grails-app/taglib
 [echo] Created taglib: grails-app/taglib/GtunesTagLib.groovy

BUILD SUCCESSFUL
Total time: 8 seconds

The result will resemble something like the following:

class GtunesTagLib {

}

138 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

To see how to go about making a tag library, in the next section you’ll look at a basic tag
and then build some snazzy functionality into the gTunes application for rendering album
cover art.

Custom Tag Basics
First let’s look at the basics. A tag is essentially a closure property that takes two arguments: the
tag attributes as a java.util.Map and the body of the tag as a closure, as shown in Listing 5-41.

Listing 5-41. An Example Tag

class GtunesTagLib {

 def repeat = { attrs, body ->
 attrs.times?.toInteger().times { n ->
 body(n)
 }
 }
}

In the example, we’ve defined a tag called repeat that looks for an attribute called times,
which it attempts to convert to an integer, and then uses Groovy’s built-in times method to
execute the body multiple times.

As mentioned previously, the body is a closure and therefore can be invoked like a method.
In addition, you pass the number of the current iteration, as the variable n, to the body as the first
argument to the closure call. Why is this useful? It means that the number is available as the
default it argument in the tag’s body. As an example, let’s try the new tag in a GSP view as in
Listing 5-42. Note that the name of the tag in the markup matches the property name defined
in the library shown in Listing 5-41.

Listing 5-42. Using the repeat Tag

<g:repeat times="3">
 Hello number ${it}
</g:repeat>

As you can see, the tag uses the default it argument to reference the value passed when
the tag calls the body closure. The resulting output will be the following:

Hello number 1
Hello number 2
Hello number 3

All the tags that are bundled with Grails are defined in the g namespace. By default, all
your own custom tags are also put in the g namespace. To avoid naming conflicts with built-in
tags and with tags that may be installed into a project as part of a plugin, you should define a
namespace for your own tag libraries. Defining a namespace for a tag library is as simple as

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 139

declaring a static property called namespace in the taglib class and assigning that property a
String value, as shown in Listing 5-43.

Listing 5-43. Defining a Custom Namespace for a Tag Library

class GtunesTagLib {

 static namespace = 'gt'

 def repeat = { attrs, body ->
 attrs.times?.toInteger().times { n ->
 body(n)
 }
 }
}

With that namespace property in place, all the tags defined in the GTunesTagLib are now in
the gt namespace. Instead of referring to <g:repeat/>, GSPs should now refer to <gt:repeat/>.

Not only are Grails tags amazingly concise when compared to their JSP brethren, but it is
important to note that all changes to tags can be reloaded at runtime just like with controllers;
there’s no need to configure tag library descriptors or restart servers, which makes Grails tags a
far more interesting and agile proposition.

Testing a Custom Tag
Like most of your code in a Grails application, the code in custom tag libraries should be tested.
Testing tag libraries can be tricky. The test needs a way to invoke a tag, provide parameters, pro-
vide a body, and inspect the effect of invoking the tag. Fortunately, Grails provides a really slick
mechanism for managing all of that. Unit tests for custom tag libraries should extend from the
grails.test.TagLibUnitTestCase class. Listing 5-44 contains a unit test for the GtunesTagLib
class defined earlier.

Listing 5-44. Testing GtunesTagLib

// test/unit/GtunesTagLibTests.groovy

import grails.test.*

class GtunesTagLibTests extends TagLibUnitTestCase {

 void testRepeat() {
 tagLib.repeat(times: '2') {
 'output
'
 }
 assertEquals 'output
output
', tagLib.out.toString()
 }
}

140 C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S

The testRepeat() method here is invoking the repeat tag and supplying a map of param-
eters and a closure as arguments. In this case, the map contains a single parameter (times), but
the map may contain any number of parameters. The closure being passed to the tag method
represents the body of the tag. In this case, the closure returns a String. If the tag is behaving
correctly, the body of the tag should be rendered twice since the value of the times parameter
is 2. The assertion at the bottom of the test method is checking that this did in fact happen.

This test is interacting primarily with the tagLib property. This property is not defined in
the test class but is inherited from TagLibUnitTestCase. This property will be an instance of the
tag library that is being tested. All the tags defined in this tag library are accessible as method
calls on the tagLib property.

A common thing to be asserting when testing a tag is that the tag rendered the expected
text. The out property on tagLib contains whatever the tag rendered, so inspecting that prop-
erty after invoking the tag is the simplest way to make that assertion.

The GtunesTagLibTests class does not define what tag library class is being tested here.
How does Grails know where to find the repeat tag? By default, Grails will infer the name of the
tag being tested by removing Tests from the end of the test class name. Since this class is called
GtunesTagLibTests, Grails assumes that this is a test for the GtunesTagLib tag library. If your test
does not follow this naming convention, you can be explicit about what tag library is being
tested by overriding the default constructor and passing the tag library class as an argument to
the superclass constructor. Listing 5-45 shows how to do this.

Listing 5-45. Being Explicit About Which Tag Library Is Being Tested

// test/unit/MyTagLibTests.groovy

import grails.test.*

class MyTagLibTests extends TagLibUnitTestCase {

 MyTagLibTests() {
 super(GtunesTagLib)
 }

 void testRepeat() {
 tagLib.repeat(times: '2') {
 'output
'
 }
 assertEquals 'output
output
', tagLib.out.toString()
 }
}

C H A P T E R 5 ■ U N D E R S T A N D I N G V I E W S 141

Summary
You have learned quite a bit in this chapter. You learned about Grails’ advanced view technol-
ogy, GSP, and the array of powerful tags that come packaged with it. You also learned how to
build and test your own GSP tags, and you further extended your knowledge of Groovy mock-
ing in the process. We covered a lot of ground, and you should now have a clear idea of how
powerful GSP is. Thanks to GPath, an expression language, and dynamic tag libraries, GSP has
a lot to offer to increase your productivity and enjoyment.

143

■ ■ ■

C H A P T E R 6

Mapping URLs

Grails provides working URL mappings right out of the box. The default URL mapping con-
figuration is yet one more place that the Grails framework leverages the powerful idea of
convention over configuration to lessen the burden put on the application developer. Some-
times, though, you will want to deviate from the convention and define your own custom
mappings. For example, you may want to create more descriptive and human-readable URLs.
Grails gives you the ability to easily define these custom URL mappings.

Defining application-specific URL mappings is something that comes up all the time
while building web applications. The technique for configuring URL mappings in Grails is
really powerful while remaining very simple to work with. Like a lot of configuration options in
a Grails application, configuring custom URL mappings involves writing a little bit of Groovy
code, and that’s it. In particular, no XML configuration files are involved.

Understanding the Default URL Mapping
The default URL mapping configuration in a Grails app is simple. The first part of the URL cor-
responds to the name of a controller, and the second, optional part of the URL corresponds to
the name of an action defined in that controller. For example, the /store/index URL will map
to the index action in the StoreController. Specifying the action name is optional, so if the
action name is left out of the URL, then the default action for the specified controller will be
executed. Default controller actions are described in detail in the “Setting the Default Action”
section of Chapter 4. Finally, the last piece of the URL is another optional element that repre-
sents the value of a request parameter named id. For example, the /album/show/42 URL will
map to the show action in the AlbumController with a request parameter named id that has a
value of 42.

The definition of the default mapping is in grails-app/conf/UrlMappings.groovy.
Listing 6-1 shows what UrlMappings.groovy looks like by default.

Listing 6-1. Default grails-app/conf/UrlMappings.groovy

class UrlMappings {
 static mappings = {
 "/$controller/$action?/$id?"{
 constraints {
 // apply constraints here
 }

144 C H A P T E R 6 ■ M A P P I N G U R L S

 }
 "500"(view:'/error')
 }
}

The key to this mapping is the string "/$controller/$action?/$id?". Notice that the
$action and $id elements are both followed by a question mark. The question mark indicates
an optional piece of the URL. The $controller element has no question mark, so it is a required
piece of the URL. A mapping can define any number of optional elements. If a mapping does
contain any optional elements, they must all appear at the end of the pattern.

■Note The constraints block in the default mapping is empty. The constraints block is optional and
will be discussed in the “Applying Constraints to URL Mappings” section later in this chapter. The mapping
that begins with "500" will be discussed later in the “Mapping HTTP Response Codes” section.

Including Static Text in a URL Mapping
In the default mapping, each of the elements in the URL is a variable. Variable elements are
prefixed with a $ sign. A URL mapping can contain static elements as well. A static element in a
URL mapping is simply text that must be part of the URL in order for a particular mapping to
apply. See Listing 6-2 for an example of a mapping that contains static text.

Listing 6-2. Including Static Text in a Mapping

class UrlMappings {
 static mappings = {
 "/showAlbum/$controller/$action?/$id?" {
 constraints {
 // apply constraints here
 }
 }

 // ...
 }
}

This mapping will match URLs such as /showAlbum/album/show/42 and /showAlbum/
album/list but will not match URLs such as /album/show/42 since that one does not begin
with /showAlbum.

C H A P T E R 6 ■ M A P P I N G U R L S 145

Removing the Controller and Action Names from
the URL
The controller and action names do not need to be part of the URL. These special elements
can be eliminated from the URL pattern and specified as properties of the mapping. As
shown previously, the default mapping supports a URL such as /album/show/42, which will
map to the show action in the AlbumController. An application can choose to support a URL
such as /showAlbum/42 to access that same controller action. The code in Listing 6-3 includes
a mapping to support this.

Listing 6-3. Specifying the Controller and Action As Properties of the Mapping

class UrlMappings {
 static mappings = {
 "/showAlbum/$id" {
 controller = 'album'
 action = 'show'
 }

 // ...
 }
}

The mapping engine in Grails provides support for an alternate syntax to express this same
mapping. Which technique you choose is a matter of personal preference. Listing 6-4 shows
the alternate syntax.

Listing 6-4. Specifying the Controller and Action As Parameters to the Mapping

class UrlMappings {
 static mappings = {
 "/showAlbum/$id"(controller:'album', action:'show')

 // ...
 }
}

Embedding Parameters in a Mapping
Of course, Grails supports request parameters using the standard HTTP request parameter
notation. A URL such as /showArtist?artistName=Rush would work if you had a mapping like
the mapping shown in Listing 6-5.

146 C H A P T E R 6 ■ M A P P I N G U R L S

Listing 6-5. A Mapping for the /showArtist URL

class UrlMappings {
 static mappings = {
 "/showArtist"(controller:'artist', action:'show')

 // ...
 }
}

Accessing /showArtist?artistName=Rush would map to the show action in the
ArtistController and a request parameter named artistName would be populated
with the value Rush. Notice that the artistName parameter is not represented anywhere
in the mapping. This is because our mapping applies to the /showArtist URL, and there-
fore any arbitrary parameters can be passed to that URL without affecting the mapping.

Although this approach works, it has its drawbacks. One drawback is the URL is just ugly,
and it would continue to get uglier as more request parameters were introduced.

Grails’ URL mapping engine provides a much slicker solution to support custom URLs that
have request parameters embedded in the URL. Instead of /showArtist?artistName=Rush, let’s
support a URL such as /showArtist/Rush. The mapping in Listing 6-6 works perfectly for this.

Listing 6-6. Embedding a Request Parameter in the URL

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName"(controller:'artist', action:'show')

 // ...
 }
}

With this mapping, URLs such as /showArtist/Tool and /showArtist/Cream will be
mapped to the show action in the ArtistController with a request parameter named
artistName, and the value of that parameter will be whatever is in the last part of the
URL; in the previous examples, these were the Tool and Cream values. The action in the
AlbumController would have access to the request parameter and could use the parameter
however is appropriate. See Listing 6-7.

Listing 6-7. Accessing a Request Parameter in the Controller Action

class ArtistController {
 def show = {
 def artist = Artist.findByName(params.artistName)
 // do whatever is appropriate with the artist...
 }
}

C H A P T E R 6 ■ M A P P I N G U R L S 147

A little snag that must be dealt with here is that the artist names may include characters
that are not valid in a URL. One technique you might use is to URL-encode the parameters. A
technique like this would support accessing a band named Led Zeppelin with a URL such as
/showArtist/Led%20Zeppelin. Notice that the space in the name has been replaced with %20.
Yuck! Let’s make an application decision here and say that you’ll encode artist names by
replacing spaces with underscores. This will lead you to a friendlier-looking URL: /showArtist/
Led_Zeppelin. The URL mapping doesn’t really care about the value of the parameter, so it does
not need to be changed to support this. However, the controller action will need to be updated
since the underscores in the query parameter must be replaced with spaces. Listing 6-8 repre-
sents an updated version of the code in Listing 6-7 to deal with this.

Listing 6-8. Decoding the Request Parameter to Replace Underscores with Spaces

class ArtistController {
 def show = {
 def artist = Artist.findByName(params.artistName.replaceAll('_', ' '))
 // do whatever is appropriate with the artist...
 }
}

Another approach to encoding and decoding an artist name is to write a custom codec.
Grails dynamic codecs are covered in the “Using Dynamic Codecs” section of Chapter 14.

■Note This encoding/decoding problem exists even if the request parameter is not embedded
in the URL. For example, something like /showArtist?artistName=Led%20Zeppelin or
/showArtist?artistName=Led_Zeppelin would be necessary to deal with the space in the
parameter value.

Specifying Additional Parameters
In addition to embedding parameters in the URL, arbitrary request parameters may be speci-
fied as properties of a particular mapping that never show up in the URL. Listing 6-9 includes
an example.

Listing 6-9. Specifying Additional Request Parameters

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName"(controller:'artist', action:'show') {
 format = 'simple'
 }

148 C H A P T E R 6 ■ M A P P I N G U R L S

 "/showArtistDetail/$artistName"(controller:'artist', action:'show') {
 format = 'detailed'
 }

 // ...
 }
}

With this mapping in place, a request to the URL /showArtist/Pink_Floyd would map to
the show action in the ArtistController, and the request would include parameters named
artistName and format with the values Pink_Floyd and simple, respectively. A request to the
URL /showArtistDetail/Pink_Floyd would map to the same action and controller, but the
format request parameter would have a value of detailed.

Mapping to a View
Sometimes you might want a certain URL pattern to map directly to a view. This is useful when
the view does not require any data to be passed in and no controller action is required. In a case
like this, you can define a URL mapping that is associated with a view rather than a controller
action. The syntax is the same as mapping to an action except you must specify a value for the
view property instead of the action property. Listing 6-10 demonstrates how to do this.

Listing 6-10. Mapping to a View

class UrlMappings {
 static mappings = {
 "/"(view:'/welcome')

 // ...
 }
}

This mapping will handle all requests to the root of the application (/) by rendering the
GSP at grails-app/views/welcome.gsp. The mapping engine also allows a mapping to specify a
view that belongs to a particular controller. For example, Listing 6-11 demonstrates how to
map the /find URL to grails-app/views/search/query.gsp.

Listing 6-11. Mapping to a View for a Particular Controller

class UrlMappings {
 static mappings = {
 "/find"(view:'query', controller:'search')

 // ...
 }
}

C H A P T E R 6 ■ M A P P I N G U R L S 149

Remember that no controller action is being executed for this mapping. The controller is
being specified only so the framework can locate the appropriate GSP.

Applying Constraints to URL Mappings
The URL mapping engine provides a really powerful mechanism for applying constraints to
variables embedded in a URL mapping. The constraints are similar those applied to domain
objects. See the “Validating Domain Classes” section in Chapter 3 for information about
domain constraints. Applying constraints to variables in a URL mapping can greatly simplify
the job of weeding out certain kinds of invalid data that would otherwise have to be dealt with
in an imperative manner in a controller or service.

Consider a blogging application written in Grails. A typical format for a URL in a blogging
system might be something like /grailsblogs/2009/01/15/new_grails_release. To support a
URL like that, you might define a mapping like the one defined in Listing 6-12.

Listing 6-12. A Typical Blog-Type URL Mapping

class UrlMappings {
 static mappings = {
 "/grailsblogs/$year/$month/$day/$entry_name?" {
 controller = 'blog'
 action = 'display'
 constraints {
 // apply constraints here
 }
 }

 // ...
 }
}

With a mapping like that in place, a URL like /grailsblogs/2009/01/15/new_grails_release
would map to the display action in the BlogController with request parameters named year,
month, day, and entry_name and the values 2009, 01, 15, and new_grails_release, respectively.

A problem with this mapping is that not only will it match a URL such as /grailsblogs/
2009/01/15/new_grails_release, but it will also match a URL such as /grailsblogs/grails/
rocks/big/time. In this case, the controller action would receive the value grails for the year,
rocks for the month, and so on. Dealing with scenarios like this would complicate the logic in
the controller. A better way to manage them is to apply constraints to the mapping that would
let the framework know that grails is not a valid match for the year parameter in the mapping,
for example. The constraints specified in Listing 6-13 use regular expressions to limit the year,
month, and day parameters to match only those values that include the right number of digits
and only digits.

150 C H A P T E R 6 ■ M A P P I N G U R L S

Listing 6-13. Applying Constraints to Mapping Parameters

class UrlMappings {
 static mappings = {
 "/grailsblogs/$year/$month/$day/$entry_name?" {
 controller = 'blog'
 action = 'display'
 constraints {
 year matches: /[0-9]{4}/
 month matches: /[0-9]{2}/
 day matches: /[0-9]{2}/
 }
 }

 // ...
 }
}

As is the case with domain class constraints, mapping parameters may have as many
constraints applied to them as necessary. All the constraints must pass in order for the map-
ping to apply.

■Note There is a small syntactical difference between the way constraints are specified in a URL mapping
and how they are specified in a domain class. In a domain class, a constraints property is defined and
assigned a value that is a closure. In a URL mapping, you are calling a method named constraints and
passing a closure as an argument. This is why no equals sign is needed between constraints and the
closure in a URL mapping but is needed between constraints and the closure in a domain class.

Including Wildcards in a Mapping
You have seen how a mapping may contain static text as well as any number of variable param-
eters (optional and required), and you’ve seen how constraints may be applied to variable
parameters. One more aid to flexibility that you can use in a mapping definition is a wildcard.
Wildcards represent placeholders in a mapping pattern that may be matched by anything but
do not represent information that will be passed as request parameters. Wildcards in a map-
ping definition are represented by an asterisk (*). Listing 6-14 includes a mapping with a
wildcard in it.

Listing 6-14. Wildcards in a Mapping

class UrlMappings {
 static mappings = {
 "/images/*.jpg"(controller:'image')

C H A P T E R 6 ■ M A P P I N G U R L S 151

 // ...
 }
}

This mapping will handle any request for a file under the /images/ directory that ends with
the .jpg extension. For example, this mapping will handle /images/header.jpg and /images/
footer.jpg, but this mapping will not match requests for .jpg files that may exist in some sub-
directory under the /images/ directory. For example, a request for something like /images/
photos/president.jpg would not match. A double wildcard can be used to match any number
of subdirectories. Listing 6-15 shows a double wildcard mapping.

Listing 6-15. Double Wildcards in a Mapping

class UrlMappings {
 static mappings = {
 "/images/**.jpg"(controller:'image')

 // ...
 }
}

This mapping will match requests for things such as /images/header.jpg and /images/
footer.jpg as well as things such as /images/photos/president.jpg.

For some situations, it may be desirable for the value that matched the wildcard to be
passed to the controller as a request parameter. This is achieved by prepending a variable to
the wildcard in the mapping. See Listing 6-16.

Listing 6-16. Double Wildcards with a Variable in a Mapping

class UrlMappings {
 static mappings = {
 "/images/$pathToFile**.jpg"(controller:'image')

 // ...
 }
}

In this case, the pathToFile request parameter would represent the part of the URL that
matched the wildcard. For example, a request for /images/photos/president.jpg would result
in the pathToFile request parameter having a value of photos/president.

Mapping to HTTP Request Methods
A URL mapping can be configured to map to different actions based on the HTTP request
method.1 This can be useful when building a system that supports RESTful APIs. For example,

1. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html for definitions of all the HTTP request
methods.

152 C H A P T E R 6 ■ M A P P I N G U R L S

if a GET request is made to the URL /artist/The_Beatles, then the controller may respond by
generating a page that displays details about the Beatles. If a DELETE request is made to that
same URL, the controller may respond by attempting to delete the Beatles and all of the band’s
associated data (albums and so on). An application could deal with all these requests in the
same controller action by interrogating the request and reacting differently based on the HTTP
request method. Listing 6-17 shows what this might look like in the ArtistController.

Listing 6-17. Inspecting the HTTP Request Method in a Controller Action

class ArtistController {
 def actionName = {
 if(request.method == "GET") {
 // handle the GET
 } else if(request.method == "PUT") {
 // handle the PUT
 } else if(request.method == "POST") {
 // handle the POST
 } else if(request.method == "DELETE") {
 // handle the DELETE
 }
 // ...
}

This is tedious code and would likely be repeated in many places in your application. A
better idea is to configure a URL mapping that matches this URL and maps the request to dif-
ferent controller actions based on the HTTP request method. See Listing 6-18 for an example.

Listing 6-18. Mapping to HTTP Request Methods

class UrlMappings {
 static mappings = {
 "/artist/$artistName" {
 controller = 'artist'
 action = [GET: 'show',
 PUT: 'update',
 POST: 'save',
 DELETE: 'delete']
 }

 // ...
 }
}

C H A P T E R 6 ■ M A P P I N G U R L S 153

Note that the value assigned to the action property is not the name of an action but is a
Map. The keys in the map correspond to the names of HTTP request methods, and the values
associated with the keys represent the name of the action that should be invoked for that par-
ticular request method.

Mapping HTTP Response Codes
URL mappings may be defined for specific HTTP response codes. The default mapping
includes a mapping for the 500 response code (Internal Error).2 This mapping renders the
/error view for any internal error. This view is located at grails-app/views/error.gsp. This
GSP renders stack information that may be useful during development and debugging.
Listing 6-19 represents the default error.gsp page.

Listing 6-19. The Default grails-app/views/error.gsp Page

<body>
 <h1>Grails Runtime Exception</h1>
 <h2>Error Details</h2>
 <div class="message">
 Message: ${exception.message?.encodeAsHTML()}

 Caused by: ${exception.cause?.message?.encodeAsHTML()}

 Class: ${exception.className}

 At Line: [${exception.lineNumber}]

 Code Snippet:

 <div class="snippet">
 <g:each var="cs" in="${exception.codeSnippet}">
 ${cs?.encodeAsHTML()}

 </g:each>
 </div>
 </div>
 <h2>Stack Trace</h2>
 <div class="stack">
 <pre>
 <g:each in="${exception.stackTraceLines}">
 ${it.encodeAsHTML()}

 </g:each>
 </pre>
 </div>
</body>

2. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html for definitions of all the HTTP
response codes.

154 C H A P T E R 6 ■ M A P P I N G U R L S

You can add your own mappings for specific response codes. For example, if you
wanted to map every request for something that cannot be found to the default action
in the StoreController, you could do so with the mapping shown in Listing 6-20.

Listing 6-20. Custom Mapping for All 404 Response Codes

class UrlMappings {
 static mappings = {
 "404"(controller:'store')

 // ...
 }
}

Taking Advantage of Reverse URL Mapping
You have seen how to support URLs such as /showArtist/Pink_Floyd instead of URLs such as
/artist/show/42. The support you have seen so far relates to handling a request to a URL. The
other end of that interaction is equally important. That is, you need a slick mechanism for gen-
erating links that takes advantage of custom URL mappings. Fortunately, that mechanism is
built into Grails and is as easy to work with as the mapping mechanisms you have already seen.

The <g:link> GSP tag that is bundled with Grails is useful for generating links to certain
controllers and actions. See Listing 6-21 for a common use of the link tag.

Listing 6-21. The Link Tag

<td>
 <g:link action='show'
 controller='artist'
 id="${artist.id}">${artist.name}</g:link>
</td>

This tag will generate a link like Pink Floyd. That link to
/artist/show/42 is ugly. You would definitely prefer /showArtist/Pink_Floyd. The good news
is that it is easy to get the link tag to generate a link like that. You just tell the link tag what con-
troller and action you want to link to and supply all the necessary parameters that the custom
mapping calls for. For example, see the custom mapping in Listing 6-22.

Listing 6-22. A Mapping for the /showArtist/ URL

class UrlMappings {
 static mappings = {
 "/showArtist/$artistName"(controller:'artist', action:'show')

 // ...
 }
}

C H A P T E R 6 ■ M A P P I N G U R L S 155

The link tag will generate a link that takes advantage of this mapping whenever a request
is made for a link to the show action in the ArtistController and the artistName parameter is
supplied. In a GSP, that would look something like the code in Listing 6-23.

Listing 6-23. Reverse URL Mapping Using the Link Tag

<td>
 <g:link action='show'
 controller='artist'
 params="[artistName:${artist.name.replaceAll(' ', '_')}">
 ${artist.name}
 </g:link>
</td>

Defining Multiple URL Mappings Classes
When an application defines a lot of custom URL mappings, the UrlMappings class may get long
enough to warrant breaking the mappings up into several mappings classes. Having several
small, focused mappings classes will be easier to write and maintain than one monolithic class.
To introduce new mappings classes, simply define classes under grails-app/conf/ with a
name that ends with UrlMappings. The structure of those classes should be exactly the same as
the default UrlMappings class. Listing 6-24 shows a custom mappings class that would contain
Artist-related mappings.

Listing 6-24. A URL Mappings Class for Artist Mappings

class ArtistUrlMappings {
 static mappings = {
 "/showArtist/$artistName" (controller:'artist', action:'display')
 }
}

Testing URL Mappings
Like most aspects of your application, you are going to want to write automated tests for cus-
tom URL mappings to assert that the application does in fact respond to requests in the way
you intended. Grails provides a really slick mechanism for writing those tests. The simplest
way to test URL mappings is to create an integration test that extends from grails.test.
GrailsUrlMappingsTestCase. The GrailsUrlMappingsTestCase class extends GroovyTestCase
and provides a number of methods that can be used to test custom mappings.

Listing 6-25 shows a simple mapping to support URLs like /showArtist/Jeff_Beck. A
request to a URL like that should map to the display action in the ArtistController.

156 C H A P T E R 6 ■ M A P P I N G U R L S

Listing 6-25. A Custom URL Mapping

class UrlMappings {

 static mappings = {
 "/showArtist/$artistName" (controller:'artist', action:'display')

 // ...
 }
}

The assertForwardUrlMapping method in GrailsUrlMappingsTestCase can be used to
assert that a request to a URL like /showArtist/Jeff_Beck is sent to the appropriate controller
action. The code in Listing 6-26 demonstrates what this test might look like.

Listing 6-26. Unit Testing a URL Mapping

class ArtistUrlMappingsTests extends grails.test.GrailsUrlMappingsTestCase {

 void testShowArtist() {
 assertForwardUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display')
 }
}

The mapping defined in Listing 6-25 includes an embedded variable, artistName. The
GrailsUrlMappingsTestCase class provides a simple mechanism for asserting that mapping
variables like this one are being assigned the correct value. The way to do this is to pass a clo-
sure as the last argument to the assertForwardUrlMapping method and in the closure assign
values to properties with names that are consistent with the embedded variable names. See
Listing 6-27 for an example. This test will assert not only that the request maps to the display
action in the ArtistController but also that the artistName request parameter is being popu-
lated with the correct value.

Listing 6-27. Testing URL Mapping Variables

class ArtistUrlMappingsTests extends grails.test.GrailsUrlMappingsTestCase {

 void testShowArtist() {
 assertForwardUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display') {
 artistName = 'Jeff_Beck'
 }
 }
}

C H A P T E R 6 ■ M A P P I N G U R L S 157

Listing 6-28 demonstrates a similar approach to testing whether reverse URL mapping is
behaving as expected. Note that the assert method is called assertReverseUrlMapping this time.

Listing 6-28. Testing Reverse URL Mapping

class ArtistUrlMappingsTests extends grails.test.GrailsUrlMappingsTestCase {

 void testShowArtist() {
 assertReverseUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display') {
 artistName = 'Jeff_Beck'
 }
 }
}

Often it is the case that you want to test both forward and reverse URL mapping.
One way to do this is to use the assertForwardUrlMapping method in addition to using the
assertReverseUrlMapping method. Although that will work, it is more work than you need to
do. If you use the assertUrlMapping method, GrailsUrlMappingsTestCase will assert that both
forward and reverse URL mapping are working, and if either of them fail, the test will fail. See
Listing 6-29 for an example.

Listing 6-29. Testing Both Forward and Reverse URL Mapping

class ArtistUrlMappingsTests extends grails.test.GrailsUrlMappingsTestCase {

 void testShowArtist() {
 assertUrlMapping('/showArtist/Jeff_Beck',
 controller: 'artist', action: 'display') {
 artistName = 'Jeff_Beck'
 }
 }
}

The GrailsUrlMappingsTestCase class will load all the mappings defined in an application
by default. If you want to take control over which mappings are loaded while the test is run-
ning, you can do so by defining a static property in your mapping test called mappings and
assigning it a value that is either a class reference or a list of class references. If the value of the
mappings property is a class reference, that class reference should represent the mapping class
to be loaded. If the value of the mappings property is a list of class references, then all those
mapping classes will be loaded. Listing 6-30 demonstrates how to take advantage of the map-
pings property.

158 C H A P T E R 6 ■ M A P P I N G U R L S

Listing 6-30. Loading Specific URL Mapping Classes in a Unit Test

class ArtistUrlMappingsTests extends grails.test.GrailsUrlMappingsTestCase {

 static mappings = [UrlMappings, ArtistUrlMappings]

 void testShowArtist() {
 assertUrlMapping('/showArtist/Jeff_Beck',
 [controller: 'artist', action: 'display']) {
 artistName = 'Jeff_Beck'
 }
 }
}

Summary
The URL mapping engine provided by Grails is very flexible. Nearly any URL pattern that you
might want to map to a particular controller action can easily be configured simply by writing
a small amount of Groovy code in UrlMappings.groovy. The framework provides a lot of mech-
anisms that enable you to spend less time configuring the framework and more time solving
business problems in your application. The URL mapping engine is one more example of this.
Custom URL mappings are simple to write and simple to test.

159

■ ■ ■

C H A P T E R 7

Internationalization

One of the great things about web applications is that they are really easy to distribute to a lot
of people. When deploying web applications to a broad audience, often the applications need
to adapt and behave differently under certain circumstances. For example, when a request
from Spain is made to a web application, the application may want to display messages to the
user in Spanish, but the same application will want to render messages in English if the request
comes from New York. The adaptations made by the application may involve more complexity
than simply displaying different versions of text. An application may need to impose different
business rules based on the origin of a particular request.

Grails provides a number of mechanisms for dealing with the internationalization and
localization of a web application. In this chapter, we will explore those mechanisms, and you
will see that internationalizing a web application does not have to be terribly difficult.

Localizing Messages
When deploying a Grails application to a broad audience, you may want the application to dis-
play messages in the user’s preferred language. One way of providing this capability is to have
a separate version of the application for each language you want to target. That approach has
lots of problems. Maintaining all those different versions and trying to keep them all in sync
would be an awful lot of work. A much better idea is to have a single version of the application
that is flexible enough to display messages in various languages using localized messages.

To support localized messages in your Grails application, you should be defining all user
messages in a properties file. So, user messages should not be hard-coded in GSP pages, GSP
templates, or anywhere else. Having messages in a properties file means you have a single
place to maintain all of them. It also lets you take advantage of the localization capabilities pro-
vided by Grails.

Defining User Messages
When a Grails app is created, the project includes a number of localized property files in the
grails-app/i18n/ directory. Figure 7-1 shows the contents of the grails-app/i18n/ directory.

160 C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N

Figure 7-1. The grails-app/i18n/ directory

The messages.properties file in the grails-app/i18n/ directory contains default valida-
tion messages in English. These messages are used when validation fails in a domain class or
command object. You can add your own application messages to this file. In addition to the
default messages.properties file, this directory has several other properties files that contain
the same messages in other languages. For example, “es” is the language code for Spanish, so
messages_es.properties contains validation messages in Spanish.

■Note The naming convention for the messages files follows the standard convention used by the
java.util.ResourceBundle class. For more information, see the documentation for java.util.
ResourceBundle and java.util.Locale at http://java.sun.com/j2se/1.5.0/docs/api/.

Property files are plain-text files, which contain name-value pairs. Listing 7-1 represents a
simple properties file.

Listing 7-1. A Simple Property File

messages.properties
app.name=gTunes
book.title=The Definitive Guide To Grails
favorite.language=Groovy
favorite.framework=Grails

C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N 161

Retrieving Message Values
In a standard Java or Groovy program, you would use the java.util.ResourceBundle class to
retrieve values from a properties file. Listing 7-2 demonstrates how you would retrieve and
print the value of the app.name property.

Listing 7-2. Using java.util.ResourceBundle

// JavaMessages.java
import java.util.ResourceBundle;

public class JavaMessages {

 public static void main(String[] args) {
 ResourceBundle bundle = ResourceBundle.getBundle("messages");
 String appName = bundle.getString("app.name");
 System.out.println("application name is " + appName);
 }
}

// GroovyMessages.groovy
def messages = ResourceBundle.getBundle('messages')
def appName = messages.getString('app.name')
println "application name is ${appName}"

The java.util.ResourceBundle class takes care of loading the properties file and provid-
ing an API to retrieve the values of properties defined in the file. Grails provides a GSP tag
called message that will retrieve property values from the messages files in the grails-app/
i18n/ directory. For the simplest case, only the code attribute must be specified when calling
the message tag. The code attribute tells the message tag which property value should be
retrieved. For example, if a property named gtunes.welcome is defined in grails-app/i18n/
messages.properties, the value of that property may be rendered in a GSP using code like
that shown in Listing 7-3.

Listing 7-3. Using the message Tag

<body>
 ...
 <g:message code="gtunes.welcome"/>
 ...
</body>

By default, Grails will decide which version of the property file to use based on the locale
of the current web request. This means that often you will not need to do anything special in
your application code with respect to localization. If you define your message properties in
several language-specific versions of the properties files under grails-app/i18n/, then Grails
will use the appropriate file based on the client’s locale.

Figure 7-2 represents the gTunes home page in English.

162 C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N

Figure 7-2. gTunes in English

There are several user messages represented in Figure 7-2. For example, on the left side
of the screen is a navigation area, which includes the “My Music” and “The Store” links. The
labels for those links will include different text when the application is accessed from different
locales. The best way to deal with that is to define those messages as properties and render the
messages in the GSP with the message tag. Listing 7-4 shows how those properties might be
defined in grails-app/i18n/messages.properties.

Listing 7-4. User Messages in grails-app/i18n/messages.properties

gtunes.my.music=My Music
gtunes.the.store=The Store
...

With those properties defined, a GSP can render those values using the message tag, as
shown in Listing 7-5.

Listing 7-5. Rendering Property Values from a GSP

<div id="navButtons">

 <g:message code="gtunes.my.music"/>
 <g:link controller="store" action="shop">
 <g:message code="gtunes.the.store"/>
 </g:link>

</div>

With that code in place, you may add corresponding properties to as many of the other
messages files as you like. To support a Spanish version of the site, add corresponding proper-
ties to grails-app/i18n/messages_es.properties, as shown in Listing 7-6.

C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N 163

Listing 7-6. User Messages in grails-app/i18n/messages_es.properties

gtunes.my.music=Mi Musica
gtunes.the.store=La Tienda
...

A simple way to test your Grails application’s localization is to include a request parameter
named lang and assign it a valid language code, such as “es” for Spanish (http://localhost:8080/
gTunes/?lang=es). Figure 7-3 shows a Spanish version of the application.

Figure 7-3. gTunes in Spanish

Using URL Mappings for Internationalization
As shown previously, a request parameter named lang will tell the framework to use a specific
language code while processing this request. One way to specify the request parameter is to
include it in the request URL, as in http://localhost:8080/gTunes/?lang=es. Another way to
specify the request parameter is by defining a custom URL mapping, as shown in Listing 7-7.

Listing 7-7. A URL Mapping for Localization

class UrlMappings {
 static mappings = {
 "/store/$lang"(controller:'store')

 // ...
 }
}

The mapping in Listing 7-7 will map all requests to a URL like http://localhost:8080/
gTunes/en/ or http://localhost:8080/gTunes/es/ where “en” and “es” could be any valid
language code.

164 C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N

Using Parameterized Messages
Often a user message may consist of more than simple static text. The message may need to
include some data that is not known until runtime. For example, gTunes displays a message
that lets the user know how many songs they have purchased. The message reads something
like “You have purchased (97) songs.” The “97” part of that message is a piece of information
that isn’t known until runtime.

Using java.text.MessageFormat
Java includes a class called java.text.MessageFormat. One of the things that java.text.
MessageFormat is useful for is supporting parameterized messages, like the one described
earlier, in a language-neutral way. A parameterized message may contain any number of
parameters, and the parameters are represented with numbers surrounded by curly braces
in the value of the message. Listing 7-8 shows how the “You have purchased (97) songs.”
message might be represented in grails-app/i18n/messages.properties.

Listing 7-8. Defining a Parameterized Message

messages.properties
gtunes.purchased.songs=You have purchased ({0}) songs.
...

The value of the gtunes.purchased.songs message has one parameter in it. As is almost
always the case in Java and Groovy, the java.text.MessageFormat class uses a zero-based
index, so {0} in the message is a placeholder for the value of the first parameter. If the message
had multiple parameters, they would be represented in the value of the message with place-
holders like {0}, {1}, {2}, and so on.

The code in Listing 7-9 shows how java.text.MessageFormat might be used from a Java
program.

Listing 7-9. Using MessageFormat to Populate a Parameterized Message with Java

// JavaMessages.java
import java.util.ResourceBundle;
import java.text.MessageFormat;

public class JavaMessages {

 public static void main(String[] args) {
 ResourceBundle bundle = ResourceBundle.getBundle("messages");
 String songsPurchased = bundle.getString("gtunes.purchased.songs");
 String message = MessageFormat.format(songsPurchased, 97);
 System.out.println("message: " + message);
 }
}

C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N 165

Listing 7-10 shows a Groovy script that does the same thing.

Listing 7-10. Using MessageFormat to Populate a Parameterized Message with Groovy

import java.text.MessageFormat

def bundle = ResourceBundle.getBundle('messages')
def songsPurchased = bundle.getString('gtunes.purchased.songs')
def message = MessageFormat.format(songsPurchased, 97)

println "message: ${message}"

Using the message Tag for Parameterized Messages
Grails allows for parameterized messages to be used without the need for you, the application
developer, to deal directly with the java.text.MessageFormat class. The message tag supports
an optional parameter named args, and if that parameter is assigned a value, its value will be
treated as a list of parameters that need to be applied to the message. Listing 7-11 shows how
to pass arguments to the message tag.

Listing 7-11. Using the message Tag to Populate a Parameterized Message

<div>
 <g:message code="gtunes.purchased.songs" args="[97]"/>
</div>

Of course, for a message like this, you will probably not want to hard-code the parameter
value in a GSP like that. More likely, you will want that value to be dynamic. The code in
Listing 7-12 is passing a parameter to the message to be applied to the gtunes.purchased.
songs message. If the currently logged in user has purchased any songs, then the value of
the parameter will be the number of songs they have purchased; otherwise, the value of the
parameter will be 0.

Listing 7-12. Using the message Tag to Populate a Parameterized Message Dynamically

<div>
 <g:message code="gtunes.purchased.songs"
 args="[session.user.purchasedSongs?.size() ?: 0]"/>
</div>

■Note Note the use of the so-called Elvis operator (?:) in the previous code. The Elvis operator is a
shorthand version of Java ternary operator where the return value for the true condition is the same as
the expression being evaluated. For example, the following expressions accomplish the same thing:

size = session.user.purchasedSongs?.size() ? session.user.purchasedSongs?.size() : 0
size = session.user.purchasedSongs?.size() ?: 0

166 C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N

Using Parameterized Messages for Validation
You will notice that the default grails-app/i18n/messages.properties file contains a number
of messages by default. These messages are there to support the mechanism that is built in to
Grails for validating domain classes and command objects. Listing 7-13 shows a domain class
that contains some constraints.

Listing 7-13. A Domain Class with Constraints

class Person {
 String firstName
 String lastName
 Integer age

 static constraints = {
 firstName size: 2..30, blank: false
 lastName size: 2..30, blank: false
 age min: 0
 }
}

These constraints are in place to make sure that the firstName and lastName properties are
at least 2 characters, no more than 30 characters, and not blank. You might think that specify-
ing a minimum length of two would take care of the blank scenario, but that is not the case.
A firstName that is simply three spaces would satisfy the length constraint but not the blank
constraint. The age property also is constrained, so it may never have a negative value. If an
instance of the Person class is created that does not satisfy all of those constraints, then a call to
the validate() method on that instance would return false. Likewise, a call to save() on the
instance would fail.

The default scaffolded views for a domain class contain code to display any validation
errors. Listing 7-14 shows a piece of the default grails-app/views/person/create.gsp.

Listing 7-14. create.gsp Containing Code to Render Validation Errors

<h1>Create Person</h1>
<g:if test="${flash.message}">
 <div class="message">${flash.message}</div>
</g:if>
<g:hasErrors bean="${personInstance}">
 <div class="errors">
 <g:renderErrors bean="${personInstance}" as="list" />
 </div>
</g:hasErrors>

C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N 167

The hasErrors tag will render its body only if personInstance has errors. If personInstance
does have errors, then the renderErrors tag will render a list of all those errors, and that render-
ing process is using the validation messages defined in grails-app/i18n/messages.properties.

Figure 7-4 shows what the user might see when attempting to create a Person in the user
interface with no firstName, no lastName, and a negative age.

Figure 7-4. Validation messages in the user interface

The error messages you see there are all defined in grails-app/i18n/messages.properties
as parameterized messages, as shown in Listing 7-15.

Listing 7-15. Default Validation Messages

default.invalid.min.message=\
 Property [{0}] of class [{1}] with value [{2}] is less than minimum value [{3}]
default.blank.message=Property [{0}] of class [{1}] cannot be blank
...

You may modify the values of these messages to suit your application. For example, if the
default.blank.message property was given a value of {0} is a required field, then the user
would be shown error messages like those in Figure 7-5.

168 C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N

Figure 7-5. Custom validation messages in the user interface

Using messageSource
The message tag is easy to use and makes sense when a user message needs to be retrieved from
messages.properties and the message is going to be rendered in a GSP. However, sometimes
an application may need to retrieve the value of a user message and do something with it other
than render the value in a GSP. For example, the message could be used in an e-mail message.
In fact, the message could be used for any number of things, and not all of them involve ren-
dering text in a GSP.

Grails provides a bean named messageSource that can be injected into any Grails artefact
including controllers, taglibs, other beans, and so on. The messageSource bean is an instance
of the org.springframework.context.MessageSource interface provided by the Spring Frame-
work. This interface defines three overloaded versions of the getMessage method for retrieving
messages from the source. Listing 7-16 shows the signatures of these methods.1

■Note Throughout the source code and documentation of Grails, the word artefact is used to refer to a
Groovy file that fulfills a certain concept (such as a controller, tag library, or domain class). It is spelled using
the British English spelling of artefact as opposed to artifact, so we will be using that spelling throughout the
book to maintain consistency with the APIs.

1. See http://static.springframework.org/spring/docs/2.5.x/api/index.html for complete documen-
tation of the MessageSource interface and related classes.

C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N 169

Listing 7-16. The MessageSource Interface

String getMessage(String code, Object[] args, Locale locale)
String getMessage(String code, Object[] args, String defaultMessage, Locale locale)
String getMessage(MessageSourceResolvable resolvable, Locale locale)

Since the messageSource bean participates in Grails’ dependency autowiring process, all
you need to do to get a reference to the bean is declare a property named messageSource in
your Grails artefact. The code in Listing 7-17 shows how to use the messageSource bean in a
controller.

Listing 7-17. Using messageSource in a Controller

package com.g2one.gtunes

class StoreController {

 def messageSource

 def index = {
 def msg = messageSource.getMessage('gtunes.my.music', null, null)
 // ...
 }
 ...
}

Note that the second and third arguments are null. The second argument is an Object[],
which would be used to pass parameters to a parameterized message. The third argument is
a java.util.Locale, which may be specified to retrieve a message for any Locale other than
the default Locale for this request. For example, Listing 7-18 demonstrates retrieving a mes-
sage in Italian.

Listing 7-18. Using messageSource and Specifying a Locale

package com.g2one.gtunes

class StoreController {

 def messageSource

 def index = {
 def msg = messageSource.getMessage('gtunes.my.music', null, Locale.ITALIAN)
 // ...
 }
 ...
}

170 C H A P T E R 7 ■ I N T E R N A T I O N A L I Z A T I O N

Summary
Internationalization is an important aspect of building widely distributed applications. Grails
provides a number of mechanisms that make the process much easier than it might otherwise
be. All the message property files in a Grails application are located in the same place. This means
that, as an application developer, you do not need to tell Grails where to look for these files. It also
means that as a Grails developer moves from one Grails project to the next, the developer knows
exactly where to look for the property files because they are always in the same place. This is the
power of coding by convention at work. Also, retrieving messages from a property file is a snap
in a Grails application. The message tag is very easy to use from GSP pages and GSP templates.
The messageSource bean is easily accessible from wherever the application may need it. All of this
is built on top of proven and well-understood tools on the Java platform including java.text.
MessageFormat and org.springframework.context.MessageSource.

171

■ ■ ■

C H A P T E R 8

Ajax

Ajax is a technology that has taken the Web by storm and has prompted the Web 2.0 revolu-
tion. The technology was originally developed by Microsoft to power a web-based version of its
Outlook e-mail software. Microsoft implemented Ajax as an ActiveX control that could be used
by its browser, Internet Explorer, and be called from JavaScript to perform asynchronous
browser requests.

The advantage of the approach is that the browser doesn’t have to refresh the entire page
to interact with the server, thus allowing the development of applications that bear a closer
resemblance to their desktop counterparts. Since then, browsers other than Internet Explorer
have standardized on a native JavaScript object called XMLHttpRequest that has largely the same
API as Microsoft’s ActiveX control.

The Basics of Ajax
The implications of having different browsers is that you have to write specialized code that
detects which browser you are operating in and that loads the XMLHttpRequest object, either as
an ActiveX control or as a native object.

■Note Microsoft introduced a native JavaScript XMLHttpRequest object in Internet Explorer 7.0, but since
Internet Explorer 6.0 is still pretty popular, we recommend you use browser-specific code to obtain the
XMLHttpRequest object.

You can see a typical example of obtaining a reference to the XMLHttpRequest object in a
cross-browser manner in Listing 8-1.

Listing 8-1. Example of XMLHttpRequest in JavaScript

var req = null;
if (window.XMLHttpRequest) {
 req = new XMLHttpRequest();
} else if (window.ActiveXObject) {
 req = new ActiveXObject("Microsoft.XMLHTTP");
}

172 C H A P T E R 8 ■ A J A X

if(req!=null) {
 // register an event handler
 req.onreadystatechange = processRequest ;
 // open connection
 req.open("GET",
 "http://localhost:8080/a/remote/location",
 true);
 req.send(); // send request
}
function processRequest(obj) {
 alert(obj.responseXML) // Get the result from the response object
}

The previous code sends an asynchronous request to the http://localhost:8080/a/
remote/location address and then, using the onreadystatechange callback event, invokes
the processRequest function. This function simply displays an alert box with the content of the
response. To illustrate the previous code and help you better understand the flow of an Ajax
request, take a look at the UML sequence diagram in Figure 8-1. Remember that Ajax calls are
asynchronous.

Figure 8-1. An example Ajax flow

As Figure 8-1 illustrates, the browser calls some JavaScript, which in turn creates the
XMLHttpRequest object that is able to make the remote call. When the remote call has been
made, the XMLHttpRequest object then invokes the callback (in this case the processRequest
function), which in turn displays the alert.

Writing JavaScript code as shown in Listing 8-1 can become rather repetitive and tedious.
Fortunately, there are Ajax frameworks that encapsulate much of this logic, ranging from the
simple (such as Prototype) to the comprehensive (such as Dojo). Efforts are underway to stan-
dardize on a JavaScript library, but as is always the case with any collaborative effort, this could
be a long and painful process that will likely never satisfy everyone.

C H A P T E R 8 ■ A J A X 173

Knowing this, the developers of Grails have designed an “adaptive” Ajax implementation
that allows you to decide which Ajax library is most suitable for your needs. By default, Grails
ships with the Prototype library and counterpart Scriptaculous effects library; however, through
Grails’ plugin system, you can add support for alternative libraries that supply the underlying
implementation of Grails’ Ajax tags.

Before you delve into the world of Ajax tags, you need to revisit the gTunes application,
since you’ll be enhancing the gTunes application by adding a range of Ajax-powered features
that improve the user experience:

• The ability to log in asynchronously

• A new feature that allows you to search and filter songs within your library and the store
using Ajax-powered search fields

• And finally, a slicker way of displaying albums and songs including album art

So, before getting too carried away, let’s move on to the guts of the chapter by improving
the gTunes application interface, Ajax style.

Ajax in Action
To begin with, let’s start with a simple example. At a basic level, Grails provides a set of tags that
simplify the creation of Ajax-capable components such as links, forms, and text fields. For
example, to create an HTML anchor tag that when clicked executes an Ajax call, you can use the
<g:remoteLink> tag. Let’s try a “Hello World”–style example using <g:remoteLink>. First update
StoreController by adding the action shown in Listing 8-2.

Listing 8-2. An Action That Renders the Date and Time

def showTime = {
 render "The time is ${new Date()}"
}

The showTime action in Listing 8-2 uses the render method introduced in Chapter 4 to
render a plain-text response to the client that contains the current date and time, trivially
obtained through Java’s java.util.Date class. That was simple enough; now open the
index.gsp file located in the grails-app/views/store directory. Before you attempt to use the
<g:remoteLink> tag, you need to tell Grails which Ajax library to use. You can do this through
the <g:javascript> tag, which needs to go in the <head> section of your index.gsp file, as
shown in Listing 8-3.

Listing 8-3. Using the Prototype Library

<g:javascript library="prototype" />

In this case, you are telling Grails to use the Prototype library for Ajax. As a side effect,
Grails will import all the necessary Prototype dependencies into the page, so you’re ready to
go. Now, within the body of the index.gsp page, add the code shown in Listing 8-4, which uses
the <g:remoteLink> tag.

174 C H A P T E R 8 ■ A J A X

Listing 8-4. Using the Tag

<g:remoteLink action="showTime" update="time">Show the time!</g:remoteLink>
<div id="time">
</div>

What this does is add an HTML anchor tag (with the text “Show the time!”) to the page,
which when clicked will execute an asynchronous request to the showTime action of the
StoreController. The update attribute of the <g:remoteLink> tag specifies the ID of the DOM
element into which you would like to place the contents of the response. In this case, you’ve
provided an HTML <div> element with an ID of time just below the <g:remoteLink> that will be
the target of this Ajax call.

And with that, you have completed a trivial example of Ajax-enabling your application. Try
clicking the link to see what happens. You will note that the current date and time gets placed
into the <div> each time you click the link! Figure 8-2 shows an example of this behavior.

Figure 8-2. A Simple Ajax call example

Changing Your Ajax Provider
So, as it stands, you are using Prototype as the underlying library that powers the <g:remoteLink>
tag, but what if you wanted to use a different library? Grails lets you swap to a different imple-
mentation via its plugin system. For example, say you wanted to use the Yahoo UI plugin instead;
then simply run this:

$ grails install-plugin yui

C H A P T E R 8 ■ A J A X 175

Now modify the <g:javascript> tag from Listing 8-3, changing the value of the library
attribute to yui:

<g:javascript library="yui" />

Now refresh the page and try the “Show the time!” link again. Like magic, Grails is now
using Yahoo UI instead of Prototype. In addition to Yahoo UI, there are plugins for Dojo,
Ext-JS, and jQuery. The Grails plugins page at http://grails.org/Plugins provides the latest
up-to-date information on the available plugins.

Asynchronous Form Submission
Now that you have had a chance to explore a trivial example, let’s try something a little more
challenging. When building Ajax applications, it is often useful to submit a form and its data to
the server asynchronously. Currently, the login process of the gTunes application uses a regu-
lar form submission, but wouldn’t it be useful to allow users to log in without a refresh?

Right now, the login form contained within the grails-app/views/layouts/main.gsp layout
submits using a regular form. In other words, the form submission is synchronous and doesn’t
occur in a background process as an Ajax request would. Luckily, Grails provides the <g:formRe-
mote> tag—an enhanced version of the HTML form tag that enables the form to submit as an Ajax
request.

However, before you migrate the regular <g:form> tag to its infinitely more interesting
cousin <g:formRemote>, let’s move the code that renders the login form into its own GSP tem-
plate. The importance of doing this will become clear later. For now, create a new file called
grails-app/views/user/_loginForm.gsp, which will form the basis for the template, and then
cut-and-paste the code from the layout so that the template looks like Listing 8-5.

Listing 8-5. The Login Template

<g:form
 name="loginForm"
 url="[controller:'user',action:'login']">
 ...
</g:form>
<g:renderErrors bean="${loginCmd}"></g:renderErrors>

Now within the main.gsp layout, use the <g:render> tag to render the template, as shown
in Listing 8-6.

Listing 8-6. Using the Tag to Display the Login Form

<div id="loginBox">
 <g:render template="/user/loginForm"></g:render>
</div>

With that done, it is time to introduce the usage of <g:formRemote>. First simply rename
the <g:form> tag references to <g:formRemote>, and then add the update attribute (mentioned
in the previous section about the <g:remoteLink> tag) to the <g:formRemote> tag. In this case,

176 C H A P T E R 8 ■ A J A X

the update attribute refers to the DOM ID of the loginBox <div>. And that is it; the changes
to the code appear in Listing 8-7 in bold.

Listing 8-7. Altering the Login Form to Use <g:formRemote>

<g:formRemote
 name="loginForm"
 url="[controller:'user',action:'login']"
 update="loginBox">
 ...
</g:formRemote>

The remainder of the code stays the same. The <g:formRemote> tag is still submitting to the
login action of the UserController, and no change is required to any of the input fields or
the submit button. Now if you refresh the page and try to log in, a surprising thing will happen.
Astoundingly, you get the contents of the entire page placed within the loginBox <div>! This
happens because you updated the client code but paid no attention to the server logic, which
is still displaying the entire view. To correct this problem, you need to revisit the server-side
code to render only a snippet of HTML instead of the entire page.

Just in case you don’t recall the code in question, Listing 8-8 shows what the current code
for the login action of the UserController looks like.

Listing 8-8. The Current login Action Code

def login = { LoginCommand cmd ->
 if(request.method == 'POST') {
 if(!cmd.hasErrors()) {
 session.user = cmd.getUser()
 redirect(controller:'store')
 }
 else {
 render(view:'/store/index', model:[loginCmd:cmd])
 }
 }
 else {
 render(view:'/store/index')
 }
}

At the moment, the code in Listing 8-8 renders the entire grails-app/views/store/
index.gsp view, but what you actually want is for only the login form to be displayed again
(on login failure) or a welcome message to be displayed if the user successfully logged in.
Let’s refactor the code to achieve this goal; Listing 8-9 shows the result.

C H A P T E R 8 ■ A J A X 177

Listing 8-9. Handing an Ajax Login Request

def login = { LoginCommand cmd ->
 if(request.method == 'POST') {
 if(!cmd.hasErrors()) {
 session.user = cmd.getUser()
 render(template:"welcomeMessage")
 }
 else {
 render(template:'loginForm', model:[loginCmd:cmd])
 }
 }
 else {
 render(template:'loginForm')
 }
}

You could, of course, take this further and deal with both Ajax and regular requests, but for
the moment that isn’t a requirement. As you can see from the code in Listing 8-9, what you’re
doing is using the template argument of the render method instead of the view argument,
which allows you to reuse the _loginForm.gsp template. In addition, you’ll need to create a
grails-app/views/user/_welcomeMessage.gsp template to deal with a successful login, the
contents of which you can see in Listing 8-10.

Listing 8-10. The _welcomeMessage.gsp Template

<div style="margin-top:20px">
 <div style="float:right;">
 <g:link controller="user"
 action="profile"
 id="${session.user.id}">Profile</g:link> |
 <g:link controller="user" action="logout">Logout</g:link>

 </div>

 Welcome back ${session?.user?.firstName}!

 You have purchased (${session.user.purchasedSongs?.size() ?: 0}) songs.

</div>

Executing Code Before and After a Call
Each of the Ajax tags supports two attributes called before and after, which allow the insertion
of arbitrary JavaScript code to be executed before and after a remote call.

178 C H A P T E R 8 ■ A J A X

■Note The code within the after attribute will be executed whether or not the remote call is successful.
In this sense, it should not be compared to an onComplete event handler.

For example, you could use a before call to programmatically alter the value of the field
before it is sent to the server, as shown in Listing 8-11.

Listing 8-11. Example Before Attribute Usage

<g:javascript>
 function setDefaultValue(form) {
 if(form.elements[0].value == '') {
 form.elements[0].value = 'changed'
 }
 }
</g:javascript>
<g:formRemote action="login"
 before="setDefaultValue(this);"
 update="loginBox"
 name="loginForm">
...
</g:formRemote>

Here, you set a default value for the first element of the <form> (maybe a hidden or optional
field) before it is sent to the server. It is important to understand that the before and after
attributes are not event hooks. This becomes more apparent when using after, which will
execute directly after an Ajax call and will not wait until it returns. In other words, it has no
awareness of whether the Ajax call is successful. Events are a different concept that will be cov-
ered in detail in the next section.

Handling Events
An important aspect of Ajax development, and indeed any asynchronous development style, is
the ability to receive and act on events. To this end, Grails’ Ajax tags allow the registration of a
number of different event handlers that you can take advantage of. For example, a common
use case in Ajax development is to provide some form of feedback to the user while an Ajax call
is happening, be it an activity monitor, a progress bar, or a simple animated icon (such as a
spinner or an hourglass).

To accomplish this for a single Ajax call, you could use the onLoading and onComplete
events, as shown in Listing 8-12.

C H A P T E R 8 ■ A J A X 179

Listing 8-12. Displaying a Progress Indicator

<g:formRemote
 url="[controller:'user',action:'login']"
 onLoading="showProgress();"
 onComplete="hideProgress();"
 update="loginBox"
 name="loginForm">
 ...
</g:formRemote>

■Note If you are using the Prototype library, you can take advantage of Prototype’s generalized responders
mechanism, which allows you to centralize Ajax event logic to provide generic behavior across all Ajax calls
(such as displaying a progress indicator). Refer to http://www.prototypejs.org/api/ajax/responders
for more information.

Listing 8-12 uses two hypothetical JavaScript methods called showProgress() and
hideProgress() to display feedback to the user. These could be as simple as displaying an
animated graphic or something more advanced such as polling the server for the current
state of a large operation and displaying a progress bar.

Table 8-1 shows the different events. The last event in the table deserves special mention,
because it allows you to handle specific error codes. This is often useful to display alert boxes
or specific feedback to the user, such as certain codes when the server is down or being main-
tained. In the next section, we’ll cover more advanced ways to perform updates on content.

Fun with Ajax Remote Linking
In your first introduction to the <g:remoteLink> tag, you implemented a simple bit of function-
ality that displayed the time when the anchor tag was clicked. It’s not exactly groundbreaking
stuff, we know. Let’s correct this by looking at a more advanced example.

Table 8-1. Table of Ajax Events

Event Name Description

onSuccess Called when the remote call is successful

onFailure Called when the remote call begins to load the response

onLoaded Called when the remote call has loaded the response, but prior to any

onComplete Called when the response has been received and any updates are completed

onERROR_CODE Called for specific error codes such as on404

180 C H A P T E R 8 ■ A J A X

In Chapter 5, you created a few panels for the right side of the gTunes store that displayed the
newest additions to the gTunes library for songs, albums, and artists, respectfully. As a refresher,
Listing 8-13 shows the code in question from the grails-app/views/store/shop.gsp file.

Listing 8-13. The Latest Content Panel

<div id="top5Panel" class="top5Panel">
 <h2>Latest Albums</h2>
 <div id="albums" class="top5Item">
 <g:render template="/album/albumList" model="[albums: top5Albums]" />
 </div>
 <h2>Latest Songs</h2>
 <div id="songs" class="top5Item">
 <g:render template="/song/songList" model="[songs: top5Songs]" />
 </div>
 <h2>Newest Artists</h2>
 <div id="artists" class="top5Item">
 <g:render template="/artist/artistList" model="[artists: top5Artists]" />
 </div>
</div>

Each of these uses a specific template to render a simple HTML unordered list for each cat-
egory. It would be nice if the list items, instead of being plain text, consisted of HTML links that
used Ajax to display details about the Album, Song, or Artist in question.

Let’s start with Album. If you recall from the domain model, an Album has a title, release
year, genre, artist, and a list of Songs that apply to that album. To begin with, create a template
that can render that information. Listing 8-14 shows the grails-app/views/album/_album.gsp
template.

Listing 8-14. Implementing the _album.gsp Template

<div id="album${album.id}" class="album">
 <div class="albumDetails">
 <div class="artistName">${artist.name}</div>
 <div class="albumTitle">${album.title}</div>
 <div class="albumInfo">
 Genre: ${album.genre ?: 'Other'}

 Year: ${album.year}
 </div>
 <div class="albumTracks">

 <g:each in="${album.songs?}" var="song">
 ${song.title}
 </g:each>

 </div>

C H A P T E R 8 ■ A J A X 181

 <div class="albumLinks">
 </div>
</div>

Now that you have a template, you can alter the grails-app/views/album/_albumList.gsp
template to use <g:remoteLink> to call a controller action called display on the AlbumController
for each item in the list. Listing 8-15 shows (in bold) the changes made to the _albumList.gsp
template.

Listing 8-15. Updating _albumList.gsp to Use

 <g:each in="${albums?}" var="album">
 <g:remoteLink update="musicPanel"
 controller="album"
 action="display"
 id="${album.id}">${album.title}</g:remoteLink>
 </g:each>

Notice how you can use the update attribute to specify that you want the contents of the
response to be placed into an HTML <div> that has a DOM ID with the value musicPanel. If you
refresh the page at this point and try the links, you’ll notice that the Ajax part of the picture is
working already! The downside is that since there is no display action in the AlbumController
at this point, you get a 404 “Page not found” error from the server.

Let’s correct that by opening AlbumController and implementing the display action.
Listing 8-16 shows the code, which simply obtains the Album instance using the id parameter
from the params object and then uses it to render the _album.gsp template developed in
Listing 8-14.

Listing 8-16. The display Action of AlbumController

def display = {
 def album = Album.get(params.id)
 if(album) {
 def artist = album.artist
 render(template:"album", model:[artist:artist, album:album])
 }
 else {
 render "Album not found."
 }
}

By adding a bit of CSS magic to enhance the look of the _album.gsp template, all of a sud-
den you have album details being obtained via Ajax and rendered to the view. Figure 8-3 shows
the result of your hard work.

182 C H A P T E R 8 ■ A J A X

Figure 8-3. Displaying albums using Ajax

Sadly, even with the CSS enhancements, Album details are looking a bit bland with all that
text. Wouldn’t it be nice to be able to display the album art for each album? Where there is a
will, there is a way, and luckily, Amazon has come to the rescue here by providing a web ser-
vices API that lets developers look up album art from its massive pool of assets.

Even better, it has a Java API, which encapsulates the communication with the web ser-
vice, perfect for our needs. To complete the initial setup phase, follow these simple steps:

1. Sign up for a free Amazon web services account at https://aws-portal.amazon.com/gp/
aws/developer/account/index.html, and obtain your Amazon access key (you’ll be
needing it).

2. Then download the “Java Library for Amazon Associates Web Service” file from the
following location: http://developer.amazonwebservices.com/connect/
entry.jspa?externalID=880&ref=featured.

3. Extract the .zip file, and copy the amazon-a3s-*-java-library.jar file into your project
lib directory.

4. Copy the required dependencies commons-codec-1-3.jar and commons-httpclient-
3.0.1.jar from the third-party/jakarta-commons directory to your project’s lib
directory.

5. Copy all the JARs contained with the third-party/jaxb directory to your project’s lib
directory.

After going through these steps, you should have set up your project’s lib directory in a
similar fashion to Figure 8-4.

C H A P T E R 8 ■ A J A X 183

Figure 8-4. Setting up the appropriate JARs for Amazon Web Services

With that done, it is time to create your first service. The capabilities of services will be
described in more detail in Chapter 11, but as a simple definition, services are useful for cen-
tralizing business logic that needs to be shared across layers (such as from a tag library and a
controller). You’re going to create an AlbumArtService that deals with obtaining album art from
Amazon. To do this, start by running the grails create-service command:

$ grails create-service com.g2one.gtunes.AlbumArt

The create-service command will create a new empty AlbumArtService that resembles
Listing 8-17.

Listing 8-17. The AlbumArtService Template

package com.g2one.gtunes

class AlbumArtService {

}

One thing to note about services is that they are by default transactional. In other words,
each public method is wrapped in a Spring-managed transaction, making all persistence
operations atomic. The implications of this are covered in more detail in Chapter 11; for the
moment, since this service is not performing any persistence operations, you can disable this
behavior by setting the transactional static property to false:

static transactional = false

184 C H A P T E R 8 ■ A J A X

With that out of the way, your first job is to provide the AlbumArtService with the Amazon
access key you obtained earlier. To achieve this, add a String property called accessKeyId to
the AlbumArtService, such as the one shown here:

String accessKeyId

Now you can use a technique called property override configuration to specify the value
of this property in grails-app/conf/Config.groovy. Every service in Grails translates into a
singleton Spring bean. The name of the bean is formulated from the class name using bean
conventions. Hence, the bean name for AlbumArtService will be albumArtService. You can set
properties on the albumArtService bean from Config.groovy by using the beans block, as
shown in Listing 8-18.

Listing 8-18. Configuring Beans Using Config.groovy

beans {
 albumArtService {
 // Set to your Amazon Web Services Access key to enable album art
 accessKeyId = "8DSFLJL34320980DFJ" // Not a real Amazon access key!
 }
}

The advantage of this approach is that thanks to the features offered by Config.groovy,
you can easily specify per-environment access keys rather than hard-coding the key into the
AlbumArtService class. So, with the accessKeyId set, it’s time to step through the implementa-
tion of the AlbumArtService. The first thing you need to do is provide a method called
getAlbumArt that takes the Artist name and Album title:

String getAlbumArt(String artist, String album) {
 ...
}

Now you need to create an instance of the Amazon ItemSearchRequest class (remember to
import the package!) and populate it with the Artist name Album title info, the index you want
to search, and the response group you’re after:

import com.amazonaws.a2s.model.*
..
def request = new ItemSearchRequest()
request.searchIndex = 'Music'
request.responseGroup = ['Images']
request.artist = artist
request.title = album

After creating an ItemSearchRequest instance, you need to pass it to the AmazonA2SClient
class to obtain a response:

import com.amazonaws.a2s.*
..
def client = new AmazonA2SClient(accessKeyId, "")
def response = client.itemSearch(request)

C H A P T E R 8 ■ A J A X 185

With the response in hand, you can extract the information you want by indexing into the
response:

return response.items[0].item[0].largeImage.URL

Great! You have something that works, but it is heavily optimized for the happy path, so
what happens when things go wrong? Or if the accessKeyId is misconfigured? Or, heaven for-
bid, if you pass in a null artist or album? This is where unit testing best practices come in
handy.

So, before you get too far ahead of yourself, let’s create some tests to verify this thinking.
Create an AlbumArtServiceTests test suite within the test/unit directory and in the same
package as the AlbumArtService by running this command:

grails create-unit-test com.g2one.gtunes.AlbumArtServiceTests

Now let’s test what happens if there is no accessKeyId:

void testNoAccessKey() {
 def albumArtService = new AlbumArtService()
 assertNull albumArtService.getAlbumArt("foo", "bar")
}

Run the test by executing the test-app command and passing in the name of the test suite.
For example:

grails test-app com.g2one.gtunes.AlbumArtService

The result? An error. Unsurprisingly, the AmazonA2SClient was unhappy that you failed to
specify a valid accessKeyId and threw an exception. You need to deal with the case where there
is no accessKeyId specified.

The logical thing to do in this case is to return some default image to be rendered since one
cannot be obtained from Amazon without an accessKeyId. Let’s specify a constant that holds
the location of this default image:

static final DEFAULT_ALBUM_ART_IMAGE = "/images/no-album-art.gif"

Now wrap the code in an if/else block to ensure that if no accessKeyId is available you
return the default value:

String getAlbumArt(String artist, String album) {
 if(accessKeyId)
 ...
 }
 else {
 log.warn """No Amazon access key specified.
 Set [beans.albumArtService.accessKeyId] in Config.groovy"""
 return DEFAULT_ALBUM_ART_IMAGE
 }
}

186 C H A P T E R 8 ■ A J A X

Good work, but hang on...the test is still failing? Since the previous assertion was checking
for a null return value and not the default image location, you need to change the test:

void testNoAccessKey() {
 def albumArtService = new AlbumArtService()
 assertEquals AlbumArtService.DEFAULT_ALBUM_ART_IMAGE,
 albumArtService.getAlbumArt("foo", "bar")
}

Now let’s test what happens if an exception emerges from the AmazonA2SClient for any
other reason—maybe a network outage or corrupt data. Since this is a unit test, you don’t want
to actually communicate with Amazon in the test because that would slow the test down. You
can use metaprogramming techniques to provide a mock implementation of the
AmazonA2SClient’s itemSearch method instead via ExpandoMetaClass, as in Listing 8-19.

Listing 8-19. Mocking Methods with ExpandoMetaClass

void testExceptionFromAmazon() {
 AmazonA2SClient.metaClass.itemSearch = { ItemSearchRequest request ->
 throw new Exception("test exception")
 }
 def albumArtService = new AlbumArtService()
 albumArtService.accessKeyId = "293473894732974"

 assertEquals AlbumArtService.DEFAULT_ALBUM_ART_IMAGE,
 albumArtService.getAlbumArt("Radiohead", "The Bends")
}
void tearDown() {
 GroovySystem.metaClassRegistry.removeMetaClass(AmazonA2SClient)
}

The key line of Listing 8-19 is highlighted in bold as you override the default implementa-
tion of the itemSearch method to simply throw an exception. (You can find out more about
metaprogramming techniques in Appendix A.) If you run this test now, it will fail with an error.
Why? The reason is simple—you are not currently catching any exceptions. This is one area
where writing good tests really helps identify potential weaknesses in your code.

To correct the problem, update AlbumArtService to wrap the call to the Amazon client in a
try/catch block, as in Listing 8-20.

Listing 8-20. Gracefully Dealing with Exceptions from Amazon

String getAlbumArt(String artist, String album) {
 ...
 try {
 ...
 }

C H A P T E R 8 ■ A J A X 187

 catch(Exception e) {
 log.error "Problem communicating with Amazon: ${e.message}", e
 return DEFAULT_ALBUM_ART_IMAGE
 }
 ...
}

Phew. You’re nearly done; there is just one more thing to consider. Whenever dealing with
any remote resource, you have to consider the performance implications. Currently, you’re
asking Amazon to look up album art each time you call the getAlbumArt method. However,
since there is a high likelihood that you’ll be calling the getAlbumArt method repeatedly with
the same data, it makes sense to cache the result from Amazon.

To do this, you could just store the results in a local map, but what if the site grows really
big? Its memory consumption could become problematic. Really, you need a more mature
caching solution where you can configure the eviction policy. You can set up an Ehcache
instance to hold the cached data. Ehcache is a mature open source caching library that ships
with Grails. To set up Ehcache, open the grails-app/conf/spring/resources.groovy file. This
script allows you to configure additional Spring beans that can be injected into any Grails-
managed artifact such as a controller, service, or tag library.

We’ll be going into a great more detail about Spring and Spring beans in Chapter 16, but
for now it’s enough to know that each method call within the beans closure translates into a
Spring bean. The name of the method is the bean name, while the first argument to the method
is the bean class. Properties of the bean can be set in the body of the closure that is specified as
the last argument.

■Note A Spring bean is, typically, a singleton instance of a Java class that is managed by Spring, which by
implication makes it injectable into any Grails instance such as a controller or tag library.

To translate this into practice, Listing 8-21 shows how to use Spring’s EhCacheFactoryBean
class to set up an Ehcache instance that expires every 5 minutes (or 300 seconds).

Listing 8-21. Configuring an Ehcache Spring Bean

beans = {
 albumArtCache(org.springframework.cache.ehcache.EhCacheFactoryBean) {
 timeToLive = 300
 }
}

With that done, you need to augment the existing AlbumArtService to leverage the
albumArtCache bean. The first thing you need to consider is the cache key. In other words,
what logical variable or set of variables is required to look up the data you are interested in?
In this case, the key consists of the artist and album arguments passed to the getAlbumArt
method.

188 C H A P T E R 8 ■ A J A X

To formulate a logical key that models these two arguments, you need to create a new
Serializable class called AlbumArtKey and implement equals and hashCode according to the
rules defined in the javadocs for these methods. Listing 8-22 shows a possible implementation
that assumes that the artist and album are required.

Listing 8-22. The AlbumArtKey Cache Key Class

class AlbumArtKey implements Serializable {
 String artist
 String album
 boolean equals(other) { artist.equals(other.artist) &&
 album.equals(other.album) }
 int hashCode() { artist.hashCode() + album.hashCode() }
}

With the cache key done, it’s time to put it to use in the AlbumArtService. Listing 8-23
shows the albumArtCache in action; notice how you can use Groovy’s safe-dereference operator
so that the code works even if the albumArtCache is not provided.

Listing 8-23. Enabling Caching in AlbumArtService

import net.sf.ehcache.Element
...
def albumArtCache
...
String getAlbumArt(String artist, String album) {
 ...
 def key = new AlbumArtKey(album:album, artist:artist)
 def url = albumArtCache?.get(key)?.value
 if(!url) {
 // amazon look-up here
 ...
 url = response.items[0].item[0].largeImage.URL
 albumArtCache?.put(new Element(key, url))

 }
 return url
}

Excellent—you have now completed the AlbumArtService, and it is ready to be injected
into a controller or tag library near you. For reference, Listing 8-24 shows the full code for the
AlbumArtService, summarizing all that you have achieved.

C H A P T E R 8 ■ A J A X 189

Listing 8-24. The AlbumArtService

package com.g2one.gtunes

import org.codehaus.groovy.grails.commons.*
import com.amazonaws.a2s.*
import com.amazonaws.a2s.model.*
import net.sf.ehcache.Element

class AlbumArtService {
 static transactional = false
 static final DEFAULT_ALBUM_ART_IMAGE = "/images/no-album-art.gif"

 String accessKeyId
 def albumArtCache

 String getAlbumArt(String artist, String album) {

 if(accessKeyId) {
 if(album && artist) {
 def key = new AlbumArtKey(album:album, artist:artist)
 def url = albumArtCache?.get(key)?.value
 if(!url) {
 try {
 def request = new ItemSearchRequest()
 request.searchIndex = 'Music'
 request.responseGroup = ['Images']
 request.artist = artist
 request.title = album

 def client = new AmazonA2SClient(accessKeyId, "")

 def response = client.itemSearch(request)

 // get the URL to the amazon image (if one was returned).
 url = response.items[0].item[0].largeImage.URL
 albumArtCache?.put(new Element(key, url))
 }
 catch(Exception e) {
 log.error "Problem communicating with Amazon: ${e.message}",
 e

190 C H A P T E R 8 ■ A J A X

 return DEFAULT_ALBUM_ART_IMAGE
 }
 }
 return url
 }
 else {
 log.warn "Album title and Artist name must be specified"
 return DEFAULT_ALBUM_ART_IMAGE
 }
 }
 else {
 log.warn """No Amazon access key specified.
 Set [beans.albumArtService.accessKeyId] in Config.groovy"""
 return DEFAULT_ALBUM_ART_IMAGE
 }

 }
}
class AlbumArtKey implements Serializable {
 String artist
 String album
 boolean equals(other) { artist.equals(other.artist) &&
 album.equals(other.album) }
 int hashCode() { artist.hashCode() + album.hashCode() }
}

Now, given that you’ll want to display album art in the view, it makes sense to create a cus-
tom tag that encapsulates that logic. Enter the AlbumArtTagLib. To create the AlbumArtTagLib,
run the following command:

$ grails create-tag-lib com.g2one.gtunes.AlbumArt

This will result in a new tag library being created at the location grails-app/taglib/com/
g2one/gtunes/AlbumArtTagLib.groovy. As you discovered in Chapter 5, tag libraries can be
placed in a namespace. Namespaces provide logical groupings for tags. Let’s define a music
namespace for the AlbumArtTagLib; see Listing 8-25.

Listing 8-25. Defining the music Namespace

package com.g2one.gtunes

class AlbumArtTagLib {
 static namespace = "music"
 ...
}

C H A P T E R 8 ■ A J A X 191

To inject the AlbumArtService into the AlbumArtTagLib, simply define a property that
matches the bean naming conventions for the AlbumArtService:

def albumArtService

Now you need to create a tag within the AlbumArtTagLib that is capable of outputting an
HTML tag with the necessary album art URL populated. The <music:albumArt> tag will
take three attributes: an artist, an album, and an optional width attribute. The remaining
attributes should be added to the attributes of the HTML tag that is output. Listing 8-26
shows the implementation of the <music:albumArt> tag with usage of the albumArtService
highlighted in bold.

Listing 8-26. The <music:albumArt> Tag

def albumArt = { attrs, body ->
 def artist = attrs.remove('artist')?.toString()
 def album = attrs.remove('album')?.toString()
 def width = attrs.remove('width') ?: 200
 if(artist && album) {
 def albumArt = albumArtService.getAlbumArt(artist, album)
 if(albumArt.startsWith("/"))
 albumArt = "${request.contextPath}${albumArt}"
 out << "<img width=\"$width\" src=\"${albumArt}\" border=\"0\" "
 attrs.each { k,v-> out << "$k=\"${v?.encodeAsHTML()}\" "}
 out << ">"
 }
}

You can test the <music:albumArt> tag using Grails’ excellent GroovyPagesTestCase, which
allows you to test GSP tags directly. The grails create-tag-lib command already created
an integration test at the location test/integration/com/g2one/gtunes/AlbumArtTagLibTests,
which serves as a starting point for the test. The functionality being tested is similar to the
AlbumArtServiceTests suite you developed earlier, so (for the sake of brevity) we won’t go
through every test. However, Listing 8-27 shows how simple extending GroovyPagesTestCase
makes testing the <music:albumArt> tag, by calling the assertOutputEquals method that
accepts the expected output and the template to use for rendering.

Listing 8-27. Testing the <music:albumArt> Tag with GroovyPagesTestCase

package com.g2one.gtunes

import grails.test.*
...
class AlbumArtTagLibTests extend GroovyPagesTestCase {
 ...

192 C H A P T E R 8 ■ A J A X

 void testGoodResultFromAmazon() {
 AmazonA2SClient.metaClass.itemSearch = { ItemSearchRequest request ->
 [items:[[item:[[largeImage:[URL:"/mock/url/album.jpg"]]]]]] }

 albumArtService.accessKeyId = "293473894732974"

 def template = '<music:albumArt artist="Radiohead" album="The Bends" />'
 def expected = ''
 assertOutputEquals expected, template
 }
}

Finally, to put all the pieces together, you need to change the grails-app/views/
album/_album.gsp template so that it can leverage the newly created <music:albumArt> tag.
Listing 8-28 shows the amendments to _album.gsp in bold.

Listing 8-28. Adding Album Art to the _album.gsp Template

<div id="album${album.id}" class="album">
 <div class="albumArt">
 <music:albumArt artist="${artist}" album="${album}" />
 </div>
 ...
</div>

After further CSS trickery, Figure 8-5 shows what the new album art integration looks like.
Much better!

Figure 8-5. The _album.gsp template with integration album art

C H A P T E R 8 ■ A J A X 193

Adding Effects and Animation
What you’ve achieved so far is pretty neat, but it would be useful to spice it up with a few
effects. As well as Prototype, Grails ships with Scriptaculous (http://script.aculo.us/), which
is a JavaScript effects and animation library.

To start using Scriptaculous, open the grails-app/views/layouts/main.gsp layout, and
change the <g:javascript> tag that currently refers to prototype to this:

<g:javascript library="scriptaculous" />

Now say you want albums to fade in when you click the “Latest Album” links; the first thing
to do is to make sure albums are hidden to begin with. To do so, open the grails-app/views/
album/_album.gsp template, and ensure the main HTML <div> has its style attribute set to
display:none, as in Listing 8-29.

Listing 8-29. Hiding the Album

<div id="album${album.id}" class="album" style="display:none;">
 ...
</div>

Now you could use Ajax events such as onComplete, which were discussed in an earlier sec-
tion, to execute the effect. However, since that would require ensuring every <g:remoteLink>
tag contained the onComplete attribute, it is probably better to use an embedded script inside
the template. Try adding the following to the bottom of the _album.gsp template:

<g:javascript>
 Effect.Appear($('album${album.id}'))
</g:javascript>

This executes the Appear effect of the Scriptaculous library. Now whenever you click one
of the “Latest Album” links, the album fades in nicely. Scriptaculous has tons of other effects,
so it is worth referring to the documentation at http://script.aculo.us/ to find out what is
available. Also, most notable Ajax libraries—many of which offer Grails plugins—also feature
similar capabilities. Make sure you explore what is available in your Ajax library of choice!

Ajax-Enabled Form Fields
Wow, that previous section was quite an adventure. But you’re not done with Ajax yet. In this
section, you’ll learn how you can enable Ajax on form fields such as text inputs.

This is often useful if you’re implementing features such as autocomplete or an instant
search capability like Spotlight on Mac OS X. In fact, search is exactly what you’re going to aim
to achieve in this section. Sure, it is useful to be able to click the latest additions to the music
library, but it is critical that users of gTunes can search the back catalog of songs and albums.

Luckily, Grails provides an extremely useful tag to help implement the search feature—the
<g:remoteField> tag. As you might guess from the name, <g:remoteField> is a text field that
sends its value to the server whenever it changes. This is exactly what you’ll need for a Spot-
light-like search facility.

194 C H A P T E R 8 ■ A J A X

As a start, open the grails-app/views/store/shop.gsp view, and add the <g:remoteField>
search box, as shown in Listing 8-30.

Listing 8-30. Using the <g:remoteField> Tag

<div id="searchBox">
 Instant Search: <g:remoteField
 name="searchBox"
 update="musicPanel"
 paramName="q"
 url="[controller:'store', action:'search']" />
</div>

What you have done here is set up a <g:remoteField> that sends a request to the search
action of the StoreController. Using the paramName attribute, you can configure the name
of the parameter that will contain the value of the input field when it is sent. If you don’t specify
the paramName attribute, then the <g:remoteField> tag defaults to sending a parameter named
value. Figure 8-6 shows what the search box looks like.

Figure 8-6. The gTunes instance search box

If you refresh the page and start typing, you can see that field is already sending remote
requests, although you’re getting 404 errors in the page rather than anything useful. At this
point, it is worth considering how to implement search. You could, of course, use Hibernate
queries, but Hibernate is not really designed to be used as a search engine, and designing your
own search query language would be a pain.

Needless to say, the Grails plugin system comes to the rescue once again. One of the most
popular plugins currently available for Grails is the Searchable plugin, which builds on Com-
pass (http://www.compass-project.org/) and Lucene (http://lucene.apache.org/).

■Note The full documentation for Searchable is available at http://grails.org/Searchable+Plugin.

As usual, installing Searchable is trivial. Just run the following command:

$ grails install-plugin searchable

The Searchable plugin integrates with Grails by providing the ability to expose Grails
domain classes as searchable entities. At a simple level, it is possible to add search capabilities
by adding the following line to the domain class you want to search:

static searchable = true

C H A P T E R 8 ■ A J A X 195

However, it is typically the case that you want to search only a subset of the properties of
the domain class. This is, of course, perfectly possible with Searchable, and in fact it defines an
entire DSL for mapping between your classes and the search index (a topic beyond the scope
of this book).

In this case, you want to be able to search on an album or song’s genre and title and
on an artist’s name. Listing 8-31 shows how to enable the aforementioned behavior using
Searchable.

Listing 8-31. Enabling Search on the gTunes domain

class Song {
 static searchable = [only: ['genre', 'title']]
 ...
}
class Album {
 static searchable = [only: ['genre', 'title']]
 ...
}
class Artist {
 static searchable = [only: ['name']]
 ...
}

That was simple enough. Next, it is time to implement the search action of the
StoreController. Like GORM, Searchable provides a bunch of new methods on domain
classes that support searching, including the following:

• search: Returns a search result object containing a subset of objects matching the query

• searchTop: Returns the first result object matching the query

• searchEvery: Returns all result objects matching the query

• countHits: Returns the number of hits for a query

• termFreqs: Returns term frequencies for the terms in the index (advanced)

For a full reference on what each method does and how it behaves, refer to the docu-
mentation at http://grails.org/Searchable+Plugin. For your needs, you’re going to use the
search method to formulate the search results. Listing 8-32 shows the implementation of
the search action of the StoreController using Searchable APIs.

Listing 8-32. Using Searchable to Enable Search

def search = {
 def q = params.q ?: null
 def searchResults
 if(q) {
 searchResults = [
 albumResults: trySearch { Album.search(q, [max:10]) },

196 C H A P T E R 8 ■ A J A X

 artistResults: trySearch { Artist.search(q, [max:10]) },
 songResults: trySearch { Song.search(q, [max:10]) },
 q: q.encodeAsHTML()
]
 }

 render(template:"searchResults", model: searchResults)
}

def trySearch(Closure callable) {
 try {
 return callable.call()
 }
 catch(Exception e) {
 log.debug "Search Error: ${e.message}", e
 return []
 }
}

The code is pretty simple. It obtains the q parameter representing the query and, if it isn’t
blank, builds a model that contains search results for albums, artists, and songs. One interest-
ing aspect of this code is the trySearch method, which demonstrates a compelling use of
Groovy closures to deal with exceptions. Since an exception will likely be because of an error in
the search syntax, it is preferable to log that error and return an empty result rather than throw-
ing the error back to the user.

Once the search results have been formulated within a searchResults variable, the code ren-
ders a _searchResults.gsp template, passing the searchResults as the model. As Listing 8-33
demonstrates, the grails-app/views/store/_searchResults.gsp template is trivial and simply
reuses the existing templates such as _albumList.gsp and _artistList.gsp to display results.

Listing 8-33. The _searchResults.gsp Template

<div id="searchResults" class="searchResults">

 <g:if test="${albumResults?.results}">
 <div id="albumResults" class="resultsPane">
 <h2>Album Results</h2>
 <g:render template="/album/albumList"
 model="[albums:albumResults.results]"></g:render>

 </div>
 </g:if>

C H A P T E R 8 ■ A J A X 197

 <g:if test="${artistResults?.results}">
 <div id="artistResults" class="resultsPane">
 <h2>Artist Results</h2>
 <g:render template="/artist/artistList"
 model="[artists:artistResults.results]"></g:render>
 </div>
 </g:if>

 <g:if test="${songResults?.results}">
 <div id="songResults" class="resultsPane">
 <h2>Song Results</h2>
 <g:render template="/song/songList"
 model="[songs:songResults.results]"></g:render>
 </div>

 </g:if>
</div>

After calling on your CSS prowess once more, you now have nicely formulated search
results appearing, and even better, because they’re using the same <g:remoteLink> tag as the
“Latest Albums” lists on the right of the screen, they’re already Ajax-enabled out of the box.
Simply by clicking one of the search results, you get an Album’s details pulled in via Ajax!
Figure 8-7 shows the usage of the search box and demonstrates how wildcard capabilities
using the asterisk (*) character are supported thanks to the Searchable plugin.

Figure 8-7. Instant search results using <g:remoteField> and Searchable

A Note on Ajax and Performance
It is important to note the impact that using Ajax has on an application’s performance. Given
the number of small snippets of code that get rendered, it will come as little surprise that badly
designed Ajax applications have to deal with a significantly larger number of requests. What
you have seen so far in this chapter is a naïve approach to Ajax development. You have waved

198 C H A P T E R 8 ■ A J A X

the Ajax magic wand over your application with little consideration of the performance
implications.

Nevertheless, it is not too late to take some of these things into account. You can use sev-
eral techniques to reduce the number of requests an Ajax application performs before you start
throwing more hardware at the problem.

The first thing to remember is that an Ajax call is a remote network call and therefore
expensive. If you have developed with EJB, you will recall some of the patterns used to optimize
EJB remote method calls. Things such as the Data Transfer Object (DTO) are equally applicable
in the Ajax world.

Fundamentally, the DTO pattern serves as a mechanism for batching operations into a
single call and passing enough state to the server for several operations to be executed at once.
This pattern can be equally effective in Ajax, given that it is better to do one call that transmits
a lot of information than a dozen small ones.

Another popular technique is to move more complexity onto the client. Given that Ajax
clients, in general, occupy a single physical page, a fair amount of state can be kept on the cli-
ent via caching. Caching is probably the most important technique in Ajax development and,
where possible, should be exploited to optimize communications with the server.

Whichever technique you use, it will pay dividends in the long run, and the server infra-
structure guys will love you for it. The users of your application will also appreciate its faster
response times and interactivity.

Summary
In this chapter, you learned about the extensive range of adaptive Ajax tags that Grails offers
and how to apply them to give your gTunes application a more usable interactive interface. On
this particular journey, you also explored advanced Grails development, learning a lot more
about how controllers, templates, and the render method function in combination.

In the past few chapters, you’ve been very much involved with the web layer of Grails in
the shape of controllers, GSP, tag libraries, and Ajax. However, everything you have looked at
so far has used completely stateless communication. In the next chapter, you’ll look at how
Grails supports web flows for rich conversations that span multiple pages.

199

■ ■ ■

C H A P T E R 9

Creating Web Flows

The majority of modern web frameworks are heavily optimized for dealing with stateless
interaction between client and server. In other words, these frameworks assume that you’ll be
defining simple actions that remember nothing about where the user came from, where the
user is going, and what state the user is in. The stateless model offers you advantages, of course,
including the ability to scale your application’s hardware without the need to consider replica-
tion of state.

Nevertheless, you’ll occasionally face significant disadvantages to implementing certain
use cases with a stateless model. Take, for instance, the good old shopping-cart use case. A
shopping cart typically entails a step-by-step process of accepting and displaying information
before progressing to the next screen. A shopping-cart user might go through these steps:

• Confirm the basket items and their prices.

• Enter a shipping address.

• Enter a billing address.

• Enter credit-card details.

• Confirm the order.

• Show the invoice.

You don’t want one of your users jumping into the middle of this inherently sequential
process. Of course, this restriction applies not only to shopping carts, but also to any function-
ality that is “wizard-like” in nature. To implement a shopping-cart use case with a stateless
model, you would need to store the state somewhere—maybe by storing it in the session or
using cookies. You would then need code in your actions to ensure users arrive from a point
that’s appropriate. In other words, you don’t want the user going straight from confirming the
basket items to showing the invoice. The user needs to have originated from the correct place.

However you look at it, implementing this use case in a stateless model is a pain. One way
to alleviate this pain would be to use Asynchronous JavaScript Technology and XML (Ajax) to
manage all the state on the client, which we discussed in the previous chapter. You could rea-
sonably push all this state management to the client by eliminating the need to refresh the
browser. The individual steps in your flow could be HTML elements that are shown or hidden
depending on your current state.

However, Ajax is not an option for everyone just yet, and certainly not the solution to
every problem. Occasionally, it makes a great deal of sense to push this job onto the server.

200 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Fortunately, Grails provides built-in support to aid the creation of rich web flows, often
referred to as “web conversations.” Built on the excellent Spring Web Flow project (http://
www.springframework.org/webflow), flows are integrated seamlessly into Grails with a Groovy
domain-specific language (DSL) for flow creation.

Getting Started with Flows
Flows in Grails are a mechanism for defining a series of states, beginning with a start state and
terminating with an end state. With Grails flows, it is impossible for users to call your server in
the “middle” of a flow unless they have gone through the necessary steps (or states) to reach
that point.

How does it work? Spring Web Flow is, essentially, an advanced state machine. A
flowExecutionKey and event ID is passed between client and server, typically as a request
parameter, which allows a user to transition from one state to another. Don’t get too worked
up about the mechanics of this; Grails deals with most of the communication between client
and server for you. What you do need to know, however, is how to define a flow.

Defining a Flow
Unlike the Spring Web Flow project itself, Grails doesn’t require any XML configuration to
get going. To create a flow, simply define an action in your controller whose name ends with
the “Flow” suffix (by convention). Listing 9-1 shows how you would define a hypothetical
shopping-cart flow.

Listing 9-1. Defining a Flow

class StoreController {
 def shoppingCartFlow = {
 ...
 }
}

Every flow has what is known as a “flow id.” The flow id, by convention, is the name of the
action minus the “Flow” suffix. In Listing 9-1, you defined an action called shoppingCartFlow;
hence the flow id is shoppingCart. The importance of the flow id will become more relevant
when we look at linking to flows and creating flow views.

Defining the Start State
Currently, the shoppingCart flow doesn’t look all that different from a regular controller action.
However, the way you construct a flow differs greatly. First of all, unlike actions, the body of the
closure doesn’t define the logic; instead, it defines a sequence of flow states. States are repre-
sented as method calls that take a closure parameter. Listing 9-2 shows how you can define the
start state of the shoppingCart flow.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 201

Listing 9-2. Defining the Start State

def shoppingCartFlow = {
 showCart {
 on("checkout").to "enterPersonalDetails"
 on("continueShopping").to "displayCatalogue"
 }
 ...
}

The start state is always the first state in the flow. The start state in Listing 9-2, highlighted
in bold, is called showCart. It’s a “view” state as well as a start state.

View states pause the flow execution for view rendering, allowing users to interact with
the flow. In this case, because the flow id is shoppingCart and the state is called showCart, by
convention Grails will look for a GSP at the location grails-app/views/store/shoppingCart/
showCart.gsp. In other words, unlike regular actions, which look for their views relative to the
controller directory (grails-app/views/store), flow views exist in a subdirectory that matches
the flow id—in this case, grails-app/views/store/shoppingCart.

You’ll notice in Listing 9-2 that the showCart state has two event handlers. Invoking the on
method and passing the name of the expected event defines an event handler. You can then
define what the event handler should do in response to the event by calling the to method of
the return value. Here is the example:

on("checkout").to "enterPersonalDetails"

This line specifies that when the checkout event is triggered, the flow should transition to
the enterPersonalDetails state. Simple, really. In programming terminology, DSLs that let you
use a method’s return value to chain method calls in this way are often referred to as “fluent
APIs”. You’ll learn more about events and triggering events later in the chapter.

Defining End States
A flow’s end state is a state that essentially terminates the flow’s execution. Users must start
at the beginning of the flow once an end state has been triggered. An end state is either a state
that takes no arguments, or one that performs an external redirect to another action or flow.
Listing 9-3 shows how to define a couple of end states for the shoppingCart flow, called
displayInvoice and cancelTransaction.

Listing 9-3. Defining an End State

 def shoppingCartFlow = {
 showCart {
 on("checkout").to "enterPersonalDetails"
 on("continueShopping").to "displayCatalogue"
 }
 ...

202 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

 displayInvoice()
 cancelTransaction {
 redirect(controller:"store")
 }
 }

While the displayInvoice end state renders a view called grails-app/views/store/
shoppingCart/displayInvoice.gsp, the cancelTransaction end state performs a redirect to
another controller.

Action States and View States
Between the start and end states, you’ll typically have several other states, which are either the
aforementioned view states or action states. Just to recap: A view state pauses the flow execu-
tion for view rendering; it doesn’t define an action or a redirect. As we mentioned, the start
state in Listing 9-2 is also a view state.

By default, the name of the view to render comes from the state name. However, you
can change the name of the view to render by using the render method, as you do with regular
controller actions. Listing 9-4 demonstrates how to render a view at the location grails-app/
views/store/shoppingCart/basket.gsp simply by specifying the name “basket.”

Listing 9-4. Changing the View to Render in a View State

showCart {
 render(view:"basket")
 ...
}

An action state differs from a view state in that instead of waiting for user input, it executes
a block of code that dictates how the flow should transition. For example, consider the code in
Listing 9-5.

Listing 9-5. An Action State

listAlbums {
 action {
 [albumList:Album.list(max:10,sort:'dateCreated', order:'desc')]
 }
 on("success").to "showCatalogue"
 on(Exception).to "handleError"
}

The listAlbums state defines an action by calling the action method and passing in the
block of code that defines the action as a closure. In this case, the action obtains a list of the
10 newest albums and places the list items into a Map with the key albumList. This map is
returned as the model for the action and is automatically put into flow scope. Don’t be too con-
cerned about this statement; flow scopes are the subject of the next section.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 203

As well as demonstrating how to supply a model from a flow action, the code in Listing 9-5
introduces a couple of other new concepts. First of all, if no error occurs when the flow action
is executed, the success event is automatically triggered. This will result in the flow transition-
ing to the showCatalogue action.

Finally, the code contains a second event handler that uses a convention we haven’t
seen yet. By passing in the exception type to the on method, you can specify event handlers
for particular types of exception. Listing 9-5 includes a generic exception handler that
catches all subclasses of java.lang.Exception, but you could just as easily catch a more
specific exception:

on(StoreNotAvailableException).to "maintenancePage"

In the example in Listing 9-5, the action defines and returns a model. However, action
states can also trigger custom events from the action. For example, take a look at Listing 9-6.

Listing 9-6. Triggering Events from an Action State

isGift {
 action {
 params.isGift ? yes() : no()
 }
 on("yes").to "wrappingOptions"
 on("no").to "enterShippingAddress"
}

In the example in Listing 9-6, the code defines an action state that inspects the params object
to establish whether the user has requested to have her purchase gift-wrapped. If the user has,
the code triggers the yes event simply by calling the method yes(). Note that the return value of
the action dictates the event to trigger, so in some cases you might need a return statement as
shown in Listing 9-7.

Listing 9-7. Triggering Events Using the Return Value

isGift {
 action {
 if(params.isGift)
 return yes()
 else
 return no()
 }
 on("yes").to "wrappingOptions"
 on("no").to "enterShippingAddress"
}

■Note In Groovy 1.6, the notation of returning the last expression in a method or closure was extended to
cover if/else blocks. The result is that the return statements in Listing 9-7 are no longer necessary.

204 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Flow Scopes
In addition to scopes found in regular actions such as request and session, you can use a few
other scopes associated with Grails flows: flash, flow, and conversation. Scopes are essentially
just containers, like maps. The main difference is how and when the objects contained within
these scopes are cleared. The following list summarizes the behavior of each scope:

• flash: Stores the object for the current and next request only.

• flow: Stores objects for the scope of the flow, removing them when the flow reaches an
end state.

• conversation: Stores objects for the scope of the conversation, including the root flow
and nested subflows.

As demonstrated in the previous section, models returned from action states are auto-
matically placed into flow scope. The flow scope is typically the most-used scope in flow
development because it allows you to store entries for the length of the entire flow, which are
then automatically cleaned up when the flow terminates by reaching an end state or expiring.

The conversation scope differs in that it stores entries for the scope of the root flow and all
nested subflows. Yes, Grails’ Web Flow support includes support for subflows, which we will
discuss later in the chapter.

Finally, flash scope behaves similarly to the regular flash scope provided by controller
actions. The main difference is that objects placed into flash scope within a flow must imple-
ment the java.io.Serializable interface.

Flows, Serialization, and Flow Storage
The end of the previous section touched on an important issue regarding the use of flows.
Whenever placing any object and its associations within one of the flow scopes, you must
ensure the object in question implements the java.io.Serializable interface.

Why? Quite simply, flows differ from regular scopes such as session and request in that
they store their state in a serialized, compressed form on the server. If you prefer a stateless
server, you can instead store the state in the client by setting the grails.webflow.flow.storage
property to client in grails-app/conf/Config.groovy:

grails.webflow.flow.storage="client"

In this case, Grails’ Web Flow support will store the state in the flowExecutionKey that is
passed from client to server. Using client storage has two main disadvantages:

• You can use only HTTP POST requests—via a form submission, for example—to trigger
events, because the flowExecutionKey is too large for browsers to include in the URL.

• This method is inherently unsecure unless delivered over HTTPS because you are
sending potentially sensitive data, in serialized form, to and from the server.

If security is not a concern for your application, or you are happy running your flow over
HTTPS, then using a client flow-storage mechanism might make sense because it allows your

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 205

server to remain stateless. You should, however, make this decision up front because your stor-
age mechanism affects how you implement the flow. (As we mentioned, choosing client
storage means you must use POST requests only.)

Whichever choice you make, the requirement to implement java.io.Serializable
remains the same. As you will recall from your Java experience, if you have any properties
that you don’t want serialized in your objects, you must mark them as transient. This
includes any closures you might have defined (such as GORM events, which we’ll discuss
in Chapter 10), because Groovy’s closures do not implement the Serializable interface:

transient onLoad = {}

Triggering Events from the View
In the previous section on action states and view states, you learned that a view state is a state
that pauses flow execution in order to render a view that takes user input. However, how
exactly does the view trigger a flow-execution event? Essentially, there are two ways to trigger
an event: from a link, or from a form submission.

Let’s look at links first. As we discussed in Chapter 4, Grails provides the built-in <g:link>
tag for producing HTML anchor tags that link to a particular controller and action. Linking to
flows is pretty much the same as linking to a regular action. For example, the following usage
of the <g:link> tag will link to the start state of the shoppingCart flow:

<g:link controller="store" action="shoppingCart">My Cart</g:link>

Note that you use the flow id, discussed earlier, as the value of the action attribute. Of
course, linking to the start state allows you to trigger a new flow execution, but doesn’t answer
the original question of how to trigger flow-execution events. Let’s revisit the code from the
start state of the shoppingCart flow:

showCart {
 on("checkout").to "enterPersonalDetails"
 on("continueShopping").to "displayCatalogue"
}

In the showCart state, there are two potential events that could be triggered: checkout and
continueShopping. To trigger one of these events from the <g:link> tag, you can use the event
attribute:

<g:link controller="store" action="shoppingCart" event="checkout">Checkout</g:link>

Note that the value of the action attribute always remains the same when linking to a flow.
What differs is the event, and in this case you are telling Grails to trigger the checkout event
when the link is clicked.

The mechanism to trigger events from forms is slightly different. Essentially, Grails uses
the name attribute of the submit button that was clicked to figure out which event you want
to trigger. Using the view state from Listing 9-7, you can easily trigger each event using the
<g:submitButton> tag as shown in Listing 9-8.

206 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Listing 9-8. Triggering Events from Form Submissions

<g:form name="shoppingForm" url="[controller:'store', action:'shoppingCart']">
 ...
 <g:submitButton name="checkout" value="Checkout" />
 <g:submitButton name="continueShopping" value="Continue Shopping" />
</g:form>

Transition Actions and Form Validation
In the previous section, we looked at how you can trigger events on form submission. However,
we didn’t discuss how to validate a form submission. One way is to submit to an action state.
In the section on action and view states, we looked at how you can have action states that
execute a particular block of code, which is extremely useful for making the state decision
dynamic. However, you’re better off using a transition action to perform validation.

A transition action is essentially an action that executes when a particular event is trig-
gered. Here’s the interesting part: if the transition action fails due to an error, the transition is
halted and the state is restored back to the originating state. Take, for example, the state in
Listing 9-9.

Listing 9-9. Using Transition Actions for Validation

enterPersonalDetails {
 on("submit") {
 flow.person = new Person(params)
 flow.person.validate() ? success() : error()
 }.to "enterShipping"
 on("return").to "showCart"
}

In the example in Listing 9-9, there is a view state called enterPersonalDetails that ren-
ders a form where users can enter their personal information. When the user submits the form,
the submit event is triggered. Notice how the on method that defines the submit event is passed
a closure. This closure is the submit transition action. Contained within the body of the transi-
tion action is code, which creates a new Person domain class and populates the class’s
properties by passing the params object into the constructor of the Person class.

Notice how the submit transition action then performs validation by calling validate() on
the Person instance within the flow. Using the ternary operator, the transition action will return
either a success event or an error event. If the result is a success event, the transition to the
enterShipping state continues as expected. But if the result is an error event, the transition is
halted and the user is returned to the enterPersonalDetails state, where the view can render
the errors contained within the person object.

Subflows and Conversation Scope
As we mentioned briefly in the previous section on flow scopes, Grails’ Web Flow implementa-
tion supports the notion of subflows, or flows within flows. Consider the chooseGiftWrapFlow
flow in Listing 9-10, which allows users to select their ideal gift-wrap for a given purchase.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 207

Listing 9-10. The chooseGiftWrapFlow Flow

def chooseGiftWrapFlow = {
 chooseWrapping {
 on("next").to 'chooseRibbon'
 on('cancel').to 'cancelGiftWrap'
 }
 chooseRibbon {
 on("next").to 'confirmSelection'
 on("back").to 'chooseWrapping'
 }
 confirmSelection {
 on('confirm') {
 def giftWrap = new GiftWrap(params)
 if(!giftWrap.validate()) return error()
 else {
 conversation.giftWrap = giftWrap
 }
 }.to 'giftWrapChosen'
 on('cancel').to 'cancelGiftWrap'
 }
 cancelGiftWrap()
 giftWrapChosen()
}

The chooseGiftWrap flow basically goes through three view states (chooseWrapping,
chooseRibbon, and confirmSelection) to establish the ideal wrapping for the user. Addition-
ally, there are two end states with pretty self-explanatory names: cancelGiftWrap and
giftWrapChosen.

To include the chooseGiftWrap flow in the main shoppingCart flow, you can create a new
subflow state by calling the subflow method and passing in a reference to the chooseGiftWrap
flow. Listing 9-11 shows an example by defining a wrappingOptions subflow state.

Listing 9-11. Defining a Subflow State

def shoppingCartFlow = {
 ...
 wrappingOptions {
 subflow(chooseGiftWrapFlow)
 on('giftWrapChosen') {
 flow.giftWrap = conversation.giftWrap
 }
 on('cancelGiftWrap'). to 'enterShippingAddress'
 }
}

You should note two critical things about the code in Listing 9-11. First, the wrappingOptions
subflow state defines two event handlers called giftWrapChosen and cancelGiftWrap. You will note
that these event names match the end states of the chooseGiftWrap flow!

208 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

The second important thing is that the confirmSelection state from the chooseGiftWrap
flow in Listing 9-10 places an instance of a hypothetical GiftWrap domain class in conversation
scope. As we mentioned in the section on flow scopes, conversation scope is shared across all
flows and subflows, so it’s a good way to pass variables between flows. The giftWrapChosen
event handler in Listing 9-11 defines a transition action, which takes the giftWrap variable
from conversation scope and places it into local flow scope.

Flows in Action
Now that you know the mechanics of Grails flows, you can put this knowledge into action by
developing the next use case for the gTunes application. You have the ability to browse the
gTunes Music Library, but gTunes won’t be a proper store until users can purchase music!

You’ll be selling digital music, so you won’t have anything to ship to users. So to make it
interesting, you’re going to offer a unique, possibly misguided, feature in the gTunes music
store: the ability to order a hard-copy CD along with a digital purchase—for free!

To spice things up even further, you’re going to implement that classic Amazonesque
“recommendations” feature, which tries to tempt users into buying other albums before com-
pleting a purchase. Figure 9-1 shows the basic decision-making process that the user follows
when stepping through the flow.

Figure 9-1. The gTunes purchase flow

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 209

Updating the Domain
The first task is to provide prices for the albums in the music store. To do so, open the Album
domain class and add a price property. Listing 9-12 shows the changes to the grails-app/
domain/Album.groovy file.

Listing 9-12. Adding Prices to the Album Class

package com.g2one.gtunes

class Album implements Serializable{
 ..
 Float price
 static constraints = {
 ...
 price scale:2, nullable:false
 }
}

The code in Listing 9-12 not only adds a price property, but also constrains the price
property in two ways. First, the nullable constraint ensures consistency by not allowing the
price to be null. Second (and more interesting), the scale constraint is used to ensure that
the price is constrained to two decimal places.

With the knowledge that you’re developing a flow, you also need to change the Album class
to implement the java.io.Serializable interface as required by flows. In fact, because you’re
likely to use the rest of the domain in the context of the flow, you will need to update all the
other existing domain classes to implement Serializable, too.

In addition to these changes to the existing domain, you’re going to define three new
domain classes to capture various aspects of a transaction. First is a domain class called
Payment, which holds the invoice number and a reference to the User who completed the
purchase. Listing 9-13 shows the source for the Payment class.

Listing 9-13. The Payment Domain Class

package com.g2one.gtunes

class Payment implements Serializable {
 String invoiceNumber
 User user
 static hasMany = [albumPayments:AlbumPayment]

 static constraints = {
 invoiceNumber blank:false, matches:/INV-\d+?-\d+/
 }
}

As you can see from the code in Listing 9-13, a Payment has many AlbumPayment instances.
The AlbumPayment class is used to track what Albums a User has purchased, as well as the address

210 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

to which the CD version of the Album needs to be shipped. The source for the AlbumPayment class
is shown in Listing 9-14.

Listing 9-14. The AlbumPayment Domain Class

package com.g2one.gtunes

class AlbumPayment implements Serializable{
 Album album
 User user
 Address shippingAddress

 static constraints = {
 shippingAddress nullable:true
 }
}

Finally, to capture an AlbumPayment instance’s shipping address, you’ll need an Address
class. Listing 9-15 shows the Address class with appropriate constraints applied.

Listing 9-15. The Address Domain Class

package com.g2one.gtunes

class Address implements Serializable{
 String number
 String street
 String city
 String state
 String postCode
 String country

 static constraints = {
 number blank:false, maxSize:200
 street blank:false, maxSize:250
 city blank:false, maxSize:200
 state nullable:true
 postCode blank:false, maxSize:50
 country blank:false, maxSize:200
 }
}

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 211

Updating the View
With the updates to the domain done, let’s move on to the view. Open the grails-app/views/
album/_album.gsp template and add the price property to the albumInfo <div>. Now define a
new <div> that contains a <g:link> tag that links to a new action of the StoreController called
buy. Listing 9-16 shows the changes to the _album.gsp template, highlighted in bold.

Listing 9-16. Updates to the _album.gsp Template

<div id="album${album.id}" class="album" style="display:none;">
 ...
 <div class="albumDetails">
 ...
 <div class="albumInfo">
 Genre: ${album.genre ?: 'Other'}

 Year: ${album.year}

 Price: $ ${album.price}
 </div>
 ...
 <div class="albumLinks">
 ...
 <div id="buttons" style="float:right;">
 <g:link controller="store" action="buy" id="${album.id}">
 <img src="${createLinkTo(dir:'images',file:'buy-button.gif')}"
 border="0">
 </g:link>
 </div>
 </div>
 </div>
</div>

The key addition to the _album.gsp template is the link:

<g:link controller="store" action="buy" id="${album.id}">

The <g:link> tag defines a link to the buy action of the StoreController that passes the
Album identifier as part of the request. A few CSS tweaks later, you should have something that
resembles the screenshot in Figure 9-2.

212 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Figure 9-2. Screenshot of the updates _album.gsp template

Defining the Flow
In the previous section, you created a <g:link> tag that referenced an action called buy. As you
might have guessed, buy is going to be the name of the flow. Open grails-app/controllers/
StoreController and define a new flow called buyFlow, as shown in Listing 9-17.

Listing 9-17. Defining the buyFlow

def buyFlow {
 ...
}

Adding a Start State
Now let’s consider the start state. Here’s a logical point to start: After a user clicks on the “Buy”
button, the application should ask him whether he’d like to receive a CD version of the album.
But before you can do that, you should validate whether he is logged in; if he is, you should
place him into flow scope.

To achieve this, you can make the first state of the flow an action state. Listing 9-18 shows
an action state, called start, that checks if the user exists in the session object and triggers a
login() event if not.

Listing 9-18. Checking Login Details with an Action State

1 start {
2 action {
3 // check login status
4 if(session.user) {

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 213

5 flow.user = User.get(session.user.id)
6 return success()
7 }
8 login()
9 }
10 on('success') {
11 if(!flow.albumPayments) flow.albumPayments = []
12 def album = Album.get(params.id)
13
14 if(!flow.albumPayments.album.find { it?.id == album.id }) {
15 flow.lastAlbum = new AlbumPayment(album:album)
16 flow.albumPayments << flow.lastAlbum
17 }
18 }.to 'requireHardCopy'
19 on('login') {
20 flash.album = Album.get(params.id)
21 flash.message = "user.not.logged.in"
22 }.to 'requiresLogin'
23 }

The login event handler contains a transition action that places the Album instance into
flash scope along with a message code (you’ll understand why shortly). The event then
causes a transition to a state called requiresLogin, which is the first example of a redirect
state. Listing 9-19 shows the requiresLogin state using the objects that were placed into
flash scope to perform a redirect back to the display action of the AlbumController.

Listing 9-19. Using a Redirect Action to Exit the Flow

requiresLogin {
 redirect(controller:"album",
 action:"display",
 id: flash.album.id,
 params:[message:flash.message])
}

Hold on a moment; the display action of the AlbumController doesn’t return a full HTML
page! In the previous chapter, you designed the code to handle Ajax requests and return only
partial responses. Luckily, Grails makes it possible to modify this action to deal with both Ajax
and regular requests using the xhr property of the request object, which returns true if the
request is an Ajax request. Listing 9-20 shows the changes made to the display action in bold.

Listing 9-20. Adapting the display Action to Handle Regular Requests

def display = {
 def album = Album.get(params.id)
 if(album) {
 def artist = album.artist

214 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

 if(request.xhr) {
 render(template:"album", model:[artist:artist, album:album])
 }
 else {
 render(view:"show", model:[artist:artist, album:album])
 }
 }
 else {
 response.sendError 404
 }
}

The code highlighted in bold changes the action to render a view called grails-app/views/
album/show.gsp if the request is a non-Ajax request. Of course, the shop.gsp view in question
doesn’t exist yet, and at this point you can consider refactoring some of the view code devel-
oped in the previous section. There is a lot of commonality not only for shop.gsp, but also for
the pages of the buy flow.

Currently the instant-search box and the top-five-songs panel are hard-coded into the
grails-app/views/store/shop.gsp view, so start by extracting those into templates called
_searchbox.gsp and _top5panel.gsp, respectively. Listing 9-21 shows the updated shop.gsp
view with the extracted code replaced by templates highlighted in bold.

Listing 9-21. Extracting Common GSP Code into Templates

<html>
 ...
 <body id="body">
 <h1>Online Store</h1>
 <p>Browse or search the categories below:</p>
 <g:render template="/store/searchbox" />
 <g:render template="/store/top5panel" model="${pageScope.variables}" />
 <div id="musicPanel">
 </div>
 </body>
</html>

Notice how in Listing 9-21 you can pass the current pages’ model to the template using
the expression pageScope.variables. With that done, you’re going to take advantage of the
knowledge you gained about SiteMesh layouts in Chapter 5. Using the magic of SiteMesh,
you can make the layout currently embedded into shop.gsp truly reusable. Cut and paste the
code within shop.gsp into a new layout called grails-app/views/layouts/storeLayout.gsp,
adding the <g:layoutBody /> tag into the “musicPanel” <div>. Listing 9-22 shows the new
storeLayout.gsp file.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 215

Listing 9-22. Creating a New storeLayout

 <html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="layout" content="main">
 <title>gTunes Store</title>
 </head>
 <body id="body">
 <h1>Online Store</h1>
 <p>Browse or search the categories below:</p>
 <g:render template="/store/searchbox" />
 <g:render template="/store/top5panel" model="${pageScope.variables}" />
 <div id="musicPanel">
 <g:layoutBody />
 </div>
 </body>
 </html>

Notice how you can still supply the HTML <meta> tag that ensures the main.gsp layout is
applied to pages rendered with this layout. In other words, you can use layouts within layouts!

Now that you’ve cut and pasted the contents of shop.gsp into the storeLayout.gsp file,
shop.gsp has effectively been rendered useless. You can fix that using the <g:applyLayout> tag:

<g:applyLayout name="storeLayout" />

With one line of code, you have restored order; shop.gsp is rendering exactly the same con-
tent as before. So what have you gained? Remember that when you started this journey, the
aim was to create a grails-app/views/album/show.gsp file that the non-Ajax display action can
use to render an Album instance. With a defined layout in storeLayout, creating this view is sim-
ple (see Listing 9-23).

Listing 9-23. Reusing the storeLayout in show.gsp

<g:applyLayout name="storeLayout">
 <g:if test="${params.message}">
 <div class="message">
 <g:message code="${params.message}"></g:message>
 </div>
 </g:if>
 <g:render template="album" model="[album:album]"></g:render>
</g:applyLayout>

Using the <g:applyLayout> tag again, you can apply the layout to the body of the
<g:applyLayout> tag. When you do this in conjunction with rendering the _album.gsp tem-
plate, it takes little code to render a pretty rich view. We’ll be using the storeLayout.gsp
repeatedly throughout the creation of the rest of the flow, so stay tuned.

216 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Returning to the start state of the flow from Listing 9-18, you’ll notice that the success
event executes a transition action. When the transition action is triggered, it first creates an
empty list of AlbumPayment instances in flow scope if the list doesn’t already exist:

11 if(!flow.albumPayments) flow.albumPayments = []

Then it obtains a reference to the Album the user wants to buy using the id obtained from
the params object on line 12:

12 def album = Album.get(params.id)

With the album in hand, the code on line 14 then checks if an AlbumPayment already exists in
the list by executing a nifty GPath expression in combination with Groovy’s find method:

14 if(!flow.albumPayments.album.find { it?.id == album.id })

This one expression really reflects the power of Groovy. If you recall that the variable
flow.albumPayments is actually a java.util.List, how can it possibly have a property called
album? Through a bit of magic affectionately known as GPath, Groovy will resolve the expres-
sion flow.albumPayments.album to a new List that contains the values of the album property of
each element in the albumPayments List.

With this new List in hand, the code then executes the find method and passes it a closure
that will be invoked on each element in the List until the closure returns true. The final bit of
magic utilized in this expression is the usage of the “Groovy Truth” (http://docs.codehaus.org/
display/GROOVY/Groovy+Truth). Essentially, unlike Java where only the boolean type can be used
to represent true or false, Groovy defines a whole range of other truths. For example, null
resolves to false in an if statement, so if the preceding find method doesn’t find anything, null
will be returned and the if block will never be entered.

Assuming find does resolve to null, the expression is then negated and the if block is
entered on line 15. This brings us to the next snippet of code to consider:

15 flow.lastAlbum = new AlbumPayment(album:album)
16 flow.albumPayments << flow.lastAlbum

This snippet of code creates a new AlbumPayment instance and places it into flow scope
using the key lastAlbum. Line 15 then adds the AlbumPayment to the list of albumPayments held in
flow scope using the Groovy left shift operator << — a neat shortcut to append an element to
the end of a List.

Finally, with the transition action complete, the flow then transitions to a new state called
requireHardCopy on line 18:

18 }.to 'requireHardCopy'

Implementing the First View State
So after adding a start state that can deal with users who have not yet logged in, you’ve finally
arrived at this flow’s first view state. The requireHardCopy view state pauses to ask the user

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 217

whether she requires a CD of the purchase sent to her or a friend as a gift. Listing 9-24 shows
the code for the requireHardCopy view state.

Listing 9-24. The requireHardCopy View State

requireHardCopy {
 on('yes') {
 if(!flow.shippingAddresses)
 flow.shippingAddress = new Address()
 }.to 'enterShipping'
 on('no') {
 flow.shippingAddress = null
 }.to 'loadRecommendations'
}

Notice that the requireHardCopy state specifies two event handlers called yes and no reflect-
ing the potential answers to the question. Let’s see how you can define a view that triggers these
events. First create a GSP file called grails-app/views/store/buy/requireHardCopy.gsp.

Remember that the requireHardCopy.gsp file name should match the state name, and that
the file should reside within a directory that matches the flow id—in this case, grails-app/
views/store/buy. You will need to use the <g:link> tag’s event attribute to trigger the events in
the requireHardCopy state, as discussed previously in the section on triggering events from the
view. Listing 9-25 shows the code to implement the requireHardCopy view state.

Listing 9-25. The requireHardCopy.gsp View

<g:applyLayout name="storeLayout">
 <div id="shoppingCart" class="shoppingCart">
 <h2>Would you like a CD edition of the album
 sent to you or a friend as a gift?</h2>
 <div class="choiceButtons">
 <g:link controller="store" action="buy" event="yes">
 <img src="${createLinkTo(dir:'images',file:'yes-button.gif')}"
 border="0"/>
 </g:link>
 <g:link controller="store" action="buy" event="no">
 <img src="${createLinkTo(dir:'images',file:'no-button.gif')}"
 border="0"/>
 </g:link>
 </div>
 </div>
</g:applyLayout>

Notice how you can leverage the storeLayout once again to make sure the user interface
remains consistent. Each <g:link> tag uses the event attribute to specify the event to trigger.
Figure 9-3 shows what the dialog looks like.

218 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Figure 9-3. Choosing whether you want a CD hard copy

As you can see from the requireHardCopy state’s code in Listing 9-24, if a yes event is
triggered, the flow will transition to the enterShipping state; otherwise it will head off to the
loadRecommendations state. Each of these states will help you learn a little more about how
flows work. Let’s look at the enterShipping state, which presents a good example of doing data
binding and validation.

Data Binding and Validation in Action
The enterShipping state is the first view state that asks the user to do some form of free-text
entry. As soon as you start to accept input of this nature from a user, the requirement to vali-
date input increases. Luckily, you’ve already specified the necessary validation constraints on
the Address class in Listing 9-13. Now it’s just a matter of putting those constraints to work.

Look at the implementation of the enterShipping state in Listing 9-26. As you can see, it
defines two event handlers called next and back.

Listing 9-26. The enterShipping State

1 enterShipping {
2 on('next') {
3 def address = flow.shippingAddress
4 address.properties = params
5 if(address.validate()) {
6 flow.lastAlbum.shippingAddress = address
7 return success()
8 }
9 return error()
10 }.to 'loadRecommendations'
11 on('back') {
12 flow.shippingAddress.properties = params
13 }.to 'requireHardCopy'
14 }

We’ll revisit the transition actions defined for the next and back events shortly. For the
moment, let’s develop the view that will render the enterShipping state and trigger each event.
Create a GSP at the location grails-app/views/store/buy/enterShipping.gsp. Again, you can
use the storeLayout to ensure the layout remains consistent. Listing 9-27 shows a shortened

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 219

version of the code because the same <g:textField> tag is used for each property of the
Address class.

Listing 9-27. The enterShipping.gsp View

1 <g:applyLayout name="storeLayout">
2 <div id="shoppingCart" class="shoppingCart">
3 <h2>Enter your shipping details below:</h2>
4 <div id="shippingForm" class="formDialog">
5 <g:hasErrors bean="${shippingAddress}">
6 <div class="errors">
7 <g:renderErrors bean="${shippingAddress}"></g:renderErrors>
8 </div>
9 </g:hasErrors>
10
11 <g:form name="shippingForm" url="[controller:'store',action:'buy']">
12 <div class="formFields">
13 <div>
14 <label for="number">House Name/Number:</label>

15 <g:textField name="number"
16 value="${fieldValue(bean:shippingAddress,
17 field:'number')}" />
18 </div>
19 <div>
20 <label for="street">Street:</label>

21 <g:textField name="street"
22 value="${fieldValue(bean:shippingAddress,
23 field:'street')}" />
24 </div>
25 </div>
26
27 <div class="formButtons">
28 <g:submitButton type="image"
29 src="${createLinkTo(dir:'images',
30 file:'back-button.gif')}"
31 name="back"
32 value="Back"></g:submitButton>
33 <g:submitButton type="image"
34 src="${createLinkTo(dir:'images',
35 file:'next-button.gif')}"
36 name="next"
37 value="Next"></g:submitButton>
38 </div>
39
40
41 </g:form>

220 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

42 </div>
43 </div>
44 </g:applyLayout>

After creating fields for each property in the Address class, you should end up with some-
thing that looks like the screenshot in Figure 9-4.

Figure 9-4. Entering shipping details

As discussed in the previous section on triggering events from the view, the name of the
event to trigger is established from the name attribute of each <g:submitButton>. For example,
the following snippet taken from Listing 9-27 will trigger the next event:

33 <g:submitButton type="image"
34 src="${createLinkTo(dir:'images',
35 file:'next-button.gif')}"
36 name="next"
37 value="Next"></g:submitButton>

Another important part of the code in Listing 9-27 is the usage of <g:hasErrors> and
<g:renderErrors> to deal with errors that occur when validating the Address:

5 <g:hasErrors bean="${shippingAddress}">
6 <div class="errors">
7 <g:renderErrors bean="${shippingAddress}"></g:renderErrors>
8 </div>
9 </g:hasErrors>

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 221

This code works in partnership with the transition action to ensure that the Address is val-
idated before the user continues to the next part of the flow. You can see the transition action’s
code in the following snippet, taken from Listing 9-26:

2 on('next') {
3 def address = flow.shippingAddress
4 address.properties = params
5 if(address.validate()) {
6 flow.lastAlbum.shippingAddress = address
7 return success()
8 }
9 return error()
10 }.to 'loadRecommendations'

Let’s step through this code line by line to better understand what it’s doing. First, on line
3 the shippingAddress is obtained from flow scope:

3 def address = flow.shippingAddress

If you recall from Listing 9-24, in the requireHardCopy state you created a new instance
of the Address class and stored it in a variable called shippingAddress in flow scope when
the user specified that she required a CD version of the Album. Here, the code obtains the
shippingAddress variable using the expression flow.shippingAddress. Next, the params
object is used to bind incoming request parameters to the properties of the Address object
on line 4:

4 address.properties = params

This will ensure the form fields that the user entered are bound to each property in the
Address object. With that done, the Address object is validated through a call to its validate()
method. If validation passes, the Address instance is applied to the shippingAddress property
of the lastAlbum object stored in flow scope. The success event is then triggered by a call to the
success() method. Lines 5 through 8 show this in action:

5 if(address.validate()) {
6 flow.lastAlbum.shippingAddress = address
7 return success()
8 }

Finally, if the Address object does not validate because the user entered data that doesn’t
adhere to one of the constraints defined in Listing 9-15, the validate() method will return
false, causing the code to fall through and return an error event:

9 return error()

When an error event is triggered, the transition action will halt the transition to the
loadRecommendations state, returning the user to the enterShipping state. The view will then
render any errors that occurred so the user can correct her mistakes (see Figure 9-5).

222 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Figure 9-5. Showing validation errors in the enterShipping state

One final thing to note about the enterShipping state is the back event, which allows the
user to go back to the requireHardCopy state and change her decision if she is too daunted by
our form:

11 on('back') {
12 flow.shippingAddress.properties = params
13 }.to 'requireHardCopy'

This code also has a transition action that binds the request parameters to the
shippingAddress object, but here you don’t perform any validation. Why? If you have a really
indecisive user who changes her mind again and decides she does want a hard copy shipped
to her, all of the previous data that she entered is restored. This proves to be a useful pattern,
because no one likes to fill in the same data over and over again.

And with that, you’ve completed your first experience with data binding and validation in
conjunction with web flows. In the next section, we’re going to look at implementing a more
interesting action state that interacts with GORM.

Action States in Action
The enterShipping state from the previous section transitioned to a new state called
loadRecommendations once a valid Address had been entered. The loadRecommendations state
is an action state that interacts with GORM to inspect the user’s order and query for other
albums she might be interested in purchasing.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 223

Action states are perfect for populating flow data before redirecting flow to another state.
In this case, we want to produce two types of recommendations:

• Genre recommendations: We show recent additions to the store that share the same
genre (rock, pop, alternative, etc.) as the album(s) the user is about to purchase.

• “Other users purchased” recommendations: If another user has purchased the same
Album the current user is about to purchase, then we show some of the other user’s
purchases as recommendations.

As you can imagine, both of the aforementioned recommendations will involve some
interesting queries that will give you a chance to play with criteria queries—a topic we’ll
cover in more detail in Chapter 10. However, before we get ahead of ourselves, let’s define
the loadRecommendations action state as shown in Listing 9-28.

Listing 9-28. The loadRecommendations Action State

loadRecommendations {
 action {
 ...
 }
 on('success').to 'showRecommendations'
 on('error').to 'enterCardDetails'
 on(Exception).to 'enterCardDetails'
}

As you can see, the loadRecommendations action state defines three event handlers. Two
of them use the all-too-familiar names success and error, whereas the other is an Exception
event handler. The error and Exception handlers simply move the flow to the enterCardDetails
state. The idea here is that errors that occur while loading recommendations shouldn’t prevent
the user from completing the flow.

Now let’s implement the first of the recommendation queries, which involves querying for
other recent albums of the same genre. To do this, you can use a criteria query, which is an
alternative to String-based queries such as SQL or HQL (Hibernate Query Language).

String-based queries are inherently error-prone for two reasons. First, you must conform
to the syntax of the query language you are using without any help from an IDE or language
parser. Second, String-based queries lose much of the type information about the objects you
are querying. Criteria queries offer a type-safe, elegant solution that bypasses these issues by
providing a Groovy builder to construct the query at runtime.

To fully understand criteria queries, you should look at an example. Listing 9-29 shows the
criteria query to find genre recommendations.

224 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Listing 9-29. Querying for Genre Recommendations

1 if(!flow.genreRecommendations) {
2 def albums = flow.albumPayments.album
3 def genres = albums.genre
4 flow.genreRecommendations = Album.withCriteria {
5 inList 'genre', genres
6 not {
7 inList 'id', albums.id
8 }
9 maxResults 4
10 order 'dateCreated', 'desc'
11 }
12 }

Let’s step through the code to understand what it is doing. First, a GPath expression is used
to obtain a list of Album instances on Line 2:

2 def albums = flow.albumPayments.album

Remember that flow.albumPayments is a List, but through the expressiveness of GPath
you can use the expression flow.albumPayments.album to get another List containing each
album property from each AlbumPayment instance in the List. GPath is incredibly useful, so much
so that it appears again on Line 3:

3 def genres = albums.genre

This GPath expression asks for all the genre properties for each Album instance. Like magic,
GPath obliges. With the necessary query data in hand, you can now construct the criteria query
using the withCriteria method on Line 4:

4 flow.genreRecommendations = Album.withCriteria {

The withCriteria method returns a List of results that match the query. It takes a closure
that contains the criteria query’s criterion, the first of which is inList on line 5:

5 inList 'genre', genres

What this code is saying here is that the value of the Album object’s genre property should
be in the List of specified genres, thus enabling queries for albums of the same genre. The next
criterion is a negated inList criterion that ensures the recommendations you get back aren’t
any of the albums already in the List of AlbumPayment instances. Lines 6 through 8 show the use
of the not method to negate any single criterion or group of criteria:

6 not {
7 inList 'id', albums.id
8 }

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 225

Finally, to ensure that you get only the latest four albums that fulfill the aforementioned
criterion, you can use the maxResults and order methods on lines 9 and 10:

9 maxResults 4
10 order 'dateCreated', 'desc'

And with that, the loadRecommendations action state populates a list of genre-based recom-
mendations into a genreRecommendations variable held in flow scope. Now let’s look at the
second case, which proves to be an even more interesting query. The query essentially figures
out what albums other users have purchased that are not in the list of albums the current user
is about to purchase (see Listing 9-30).

Listing 9-30. The User Recommendations Query

1 if(!flow.userRecommendations) {
2 def albums = flow.albumPayments.album
3
4 def otherAlbumPayments = AlbumPayment.withCriteria {
5 user {
6 purchasedAlbums {
7 inList 'id', albums.id
8 }
9 }
10 not {
11 eq 'user', flow.user
12 inList 'album', albums
13 }
14 maxResults 4
15 }
16 flow.userRecommendations = otherAlbumPayments.album
17 }

Let’s analyze the query step-by-step. The first four lines are essentially the same as the
previous query, except you’ll notice the AlbumPayment class on line 4 instead of a query to
the Album class:

4 def otherAlbumPayments = AlbumPayment.withCriteria {

Lines 5 through 9 get really interesting:

5 user {
6 purchasedAlbums {
7 inList 'id', albums.id
8 }
9 }

226 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Here, an interesting feature of Grails’ criteria support lets you query the associations of a
domain class. By using the name of an association as a method call within the criteria, the code
first queries the user property of the AlbumPayment class. Taking it even further, the code then
queries the purchasedAlbums association of the user property. In a nutshell, the query is asking,
“Find me all the AlbumPayment instances where the User associated with the AlbumPayment has
one of the albums I’m about to buy in their list of purchasedAlbums.” Simple, really!

In this advanced use of criteria, there is also a set of negated criteria on lines 10 through 13:

10 not {
11 eq 'user', flow.user
12 inList 'album', albums
13 }

These two criteria guarantee two things. First, line 11 ensures that you don’t get back
AlbumPayment instances that relate to the current User. The logic here is that you want recom-
mendations only from other users—not from the user’s own purchases. Second, on line 12, the
negated inList criterion ensures you don’t get back any AlbumPayment instances that are the
same as one of the albums the user is about to buy. No point in recommending that a user buy
something she’s already about to buy, is there?

With the query out the way, on line 16 a new variable called userRecommendations is cre-
ated in flow scope. The assignment uses a GPath expression to obtain each album property
from the list of AlbumPayment instances held in the otherAlbumPayments variable:

16 flow.userRecommendations = otherAlbumPayments.album

Now that you have populated the flow.userRecommendations and flow.genreRecommendations
lists, you can check whether they contain any results. There is no point in showing users a page with
no recommendations. The code in Listing 9-31 checks each variable for results.

Listing 9-31. Checking for Results in the loadRecommendations State

 if(!flow.genreRecommendations && !flow.userRecommendations) {
 return error()
 }

Remember that in Groovy, any empty List resolves to false. If there are no results in either
the userRecommendations or the genreRecommendations list, the code in Listing 9-31 triggers the
execution of the error event, which results in skipping the recommendations page altogether.

That’s it! You’re done. The loadRecommendations state is complete. Listing 9-32 shows the
full code in action.

Listing 9-32. The Completed loadRecommendations State

loadRecommendations {
 action {
 if(!flow.genreRecommendations) {
 def albums = flow.albumPayments.album

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 227

 def genres = albums.genre
 flow.genreRecommendations = Album.withCriteria {
 inList 'genre', genres
 not {
 inList 'id', albums.id
 }
 maxResults 4
 order 'dateCreated', 'desc'
 }
 }
 if(!flow.userRecommendations) {
 def albums = flow.albumPayments.album

 def otherAlbumPayments = AlbumPayment.withCriteria {
 user {
 purchasedAlbums {
 inList 'id', albums.id
 }
 }
 not {
 eq 'user', flow.user
 inList 'album', albums
 }
 maxResults 4
 }
 flow.userRecommendations = otherAlbumPayments.album
 }
 if(!flow.genreRecommendations && !flow.userRecommendations) {
 return error()
 }

 }
 on('success').to 'showRecommendations'
 on('error').to 'enterCardDetails'
 on(Exception).to 'enterCardDetails'
}

You’ve completed the loadRecommendations action state. Now let’s see how you can
present these recommendations in the showRecommendations state. The following section
will also show how you can easily reuse transition and action states using assigned closures.

Reusing Actions with Closures
Once the loadRecommendations action state has executed and successfully accumulated a few
useful Album recommendations for the user to peruse, the next stop is the showRecommendations
view state (see Listing 9-33).

228 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Listing 9-33. The showRecommendations View State

1 showRecommendations {
2 on('addAlbum'){
3 if(!flow.albumPayments) flow.albumPayments = []
4 def album = Album.get(params.id)
5
6 if(!flow.albumPayments.album.find { it?.id == album.id }) {
7 flow.lastAlbum = new AlbumPayment(album:album)
8 flow.albumPayments << flow.lastAlbum
9 }
10 }.to 'requireHardCopy'
12 on('next').to 'enterCardDetails'
13 on('back').to{ flow.shippingAddress ? 'enterShipping' : 'requireHardCopy' }
14 }

Now, you might have noticed a striking similarity between the transition action for the add-
Album event and the transition action for the success event in Listing 9-18. Make no mistake: the
code between those two curly brackets from lines 3 to 9 is identical to that shown in Listing 9-18.

In the spirit of DRY (Don’t Repeat Yourself), you should never break out the copy machine
when it comes to code. Repetition is severely frowned upon. So how can you solve this criminal
coding offense? The solution is simple if you consider how Groovy closures operate.

Closures in Groovy are, of course, first-class objects themselves that can be assigned to
variables. Therefore you can improve upon the code in Listing 9-31 by extracting the transition
action into a private field as shown in Listing 9-34.

Listing 9-34. Using a Private Field to Hold Action Code

private addAlbumToCartAction = {
 if(!flow.albumPayments) flow.albumPayments = []
 def album = Album.get(params.id)

 if(!flow.albumPayments.album.find { it?.id == album.id }) {
 flow.lastAlbum = new AlbumPayment(album:album)
 flow.albumPayments << flow.lastAlbum
 }
}

With this done, you can refactor both the success event from the start state and the
addAlbum event from the showRecommendations view state as shown in Listing 9-35, high-
lighted in bold.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 229

Listing 9-35. Reusing Closure Code in Events

def buyFlow = {
 start {
 ...
 on('success', addAlbumToCartAction).to 'requireHardCopy'
 }
 ...
 showRecommendations {
 on('addAlbum', addAlbumToCartAction).to 'requireHardCopy'
 on('next').to 'enterCardDetails'
 on('back').to { flow.shippingAddress ? 'enterShipping' : 'requireHardCopy' }
 }
}

With that done, the showRecommendations state is a lot easier on the eye. As you can see, it
defines three events: addAlbum, next, and back. The addAlbum event uses a transition action to
add the selected Album to the list of albums the user wishes to purchase. It then transitions back
to the requireHardCopy state to inquire if the user wants a CD version of the newly added Album.

The next event allows the user to bypass the option of buying any of the recommendations
and go directly to entering her credit-card details in the enterCardDetails state. Finally, the
back event triggers the first example of a dynamic transition, a topic that we’ll cover later in the
chapter.

Now all you need to do is provide a view to render the recommendations and trigger
the aforementioned states. Do this by creating a file called grails-app/views/store/buy/
showRecommendations.gsp that once again uses the storeLayout. Listing 9-36 shows the code
for the showRecommendations.gsp file.

Listing 9-36. The showRecommendations.gsp View

<g:applyLayout name="storeLayout">
 <div id="shoppingCart" class="shoppingCart">
 <h2>Album Recommendations</h2>
 <g:if test="${genreRecommendations}">
 <h3>Other music you might like...</h3>
 <g:render template="/store/recommendations"
 model="[albums:genreRecommendations]" />
 </g:if>
 <g:if test="${userRecommendations}">
 <h3>Other users who bought ${albumPayments.album} also bought...</h3>
 <g:render template="/store/recommendations"
 model="[albums:userRecommendations]" />
 </g:if>

230 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

 <div class="formButtons">
 <g:link controller="store" action="buy" event="back">
 <img src="${createLinkTo(dir:'images',file:'back-button.gif')}"
 border="0">
 </g:link>
 <g:link controller="store" action="buy" event="next">
 <img src="${createLinkTo(dir:'images',file:'next-button.gif')}"
 border="0">
 </g:link>
 </div>
 </div>
</g:applyLayout>

The showRecommendations.gsp view contains two <g:link> tags that trigger the next
and back events. It then uses an additional template located at grails-app/views/store/
_recommendations.gsp to render each list of recommendations. The code for the
_recommendations.gsp is shown in Listing 9-37.

Listing 9-37. The _recommendations.gsp Template

<table class="recommendations">
 <tr>
 <g:each in="${albums?}" var="album" status="i">
 <td>
 <div id="rec${i}" class="recommendation">
 <g:set var="header">${album.artist.name} - ${album.title}</g:set>
 <p>
 ${header.size() >15 ? header[0..15] + '...' : header }
 </p>
 <music:albumArt width="100"
 album="${album}"
 artist="${album.artist}" />
 <p><g:link controller="store"
 action="buy"
 id="${album.id}"
 event="addAlbum">Add to Purchase</g:link></p>
 </div>
 </td>
 </g:each>
 </tr>
</table>

The important bit of this template is the “Add to Purchase” <g:link> that triggers the
addAlbum event, passing in the Album id. All in all, once users start purchasing albums, they’ll
start to see recommendations appearing in the flow as presented in Figure 9-6.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 231

Figure 9-6. Recommending albums to users

Using Command Objects with Flows
Once users get through the recommendation system, they arrive at the business end of the
transaction where they have to enter their credit-card details.

■Tip If you’re security-aware, you will note that it’s generally not advisable to take user information,
especially credit-card details, over HTTP. To run Grails in development mode over HTTPS, use the grails
run-app-https command. At deployment time, your container can be configured to deliver parts of your
site over HTTPS.

To start off, define a view state called enterCardDetails as shown in Listing 9-38.

Listing 9-38. Defining the enterCardDetails View State

enterCardDetails {
 ...
}

Before you can start capturing credit-card details, you need to set up an appropriate form
that the user can complete. You can accomplish this by creating a new view at the location

232 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

grails-app/views/store/buy/enterCardDetails.gsp, which the enterCardDetails view state
can render. Listing 9-39 shows the enterCardDetails.gsp view simplified for brevity.

Listing 9-39. The enterCardDetails.gsp View State

<g:applyLayout name="storeLayout">
<div id="shoppingCart" class="shoppingCart">
 <h2>Enter your credit card details below:</h2>
 <div id="shippingForm" class="formDialog">
 <g:form name="shippingForm" url="[controller:'store',action:'buy']">
 <div class="formFields">
 <div>
 <label for="name">Name on Card:</label>

 <g:textField name="name"
 value="${fieldValue(bean:creditCard,
 field:'name')}" />
 </div>
 ...

 </div>
 <div class="formButtons">
 <g:submitButton name="back"
 value="Back" />
 <g:submitButton name="next"
 value="Next" />
 </div>
 </g:form>
 </div>
</div>
</g:applyLayout>

Figure 9-7 shows what the final view rendering looks like after all the necessary form fields
have been added.

Figure 9-7. The enterCreditCard.gsp form

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 233

Now let’s consider how to capture the credit-card information from the user. A domain
class doesn’t really make sense because you don’t want to persist credit-card information at
this point. Luckily, like regular controller actions, flow actions support the concept of com-
mand objects first discussed in Chapter 4.

First you need to define a class that represents the command object. Listing 9-40 shows
the code for the CreditCardCommand class.

Listing 9-40. A CreditCardCommand Class Used as a Command Object

class CreditCardCommand implements Serializable {
 String name
 String number
 String expiry
 Integer code
 static constraints = {
 name blank:false, minSize:3
 number creditCard:true, blank:false
 expiry matches:/\d{2}\/\d{2}/, blank:false
 code nullable:false,max:999
 }
}

Like domain classes, command objects support the concept of constraints. Grails even pro-
vides a creditCard constraint to validate credit-card numbers. Within the messages.properties
file contained in the grails-app/i18n directory, you can provide messages that should be dis-
played when the constraints are violated. Listing 9-41 presents a few example messages.

■Tip If you’re not a native English speaker, you could try providing messages in other languages. You
could use messages_es.properties for Spanish, for example, as you learned in Chapter 7 on interna-
tionalization (i18n).

Listing 9-41. Specifying Validation Messages for the CreditCardCommand Object

creditCardCommand.name.blank=You must specify the name on the credit card
creditCardCommand.number.blank=The credit card number cannot be blank
creditCardCommand.number.creditCard.invalid=You must specify a valid card number
creditCardCommand.code.nullable=Your must specify the security code
creditCardCommand.expiry.matches.invalid=You must specify the expiry. Example 05/10
creditCardCommand.expiry.blank=You must specify the expiry number

Now let’s use the CreditCardCommand command object to define the next event and associ-
ated transition action that will validate the credit-card details entered by the user. Listing 9-42
shows how easy it is.

234 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Listing 9-42. Using the CreditCardCommand Command Object

enterCardDetails {
 on('next') { CreditCardCommand cmd ->
 flow.creditCard = cmd
 cmd.validate() ? success() : error()
 }.to 'showConfirmation'
}

If you simply define the command object as the first parameter to the closure passed as the
transition action, Grails will automatically populate the command instance from the parame-
ters in the request. The only thing left for you to do is validate the command object using the
validate() method and trigger a success or error event.

You’ll notice that in addition to the validation of the command object in Listing 9-42, the
command object is placed into flow scope through the variable name creditCard. With that
done, you can update the enterCardDetails.gsp view first shown in Listing 9-39 to render
any error messages that occur. The changes to enterCardDetails.gsp are shown in bold in
Listing 9-43.

Listing 9-43. Displaying Error Messages from a Command Object

<g:applyLayout name="storeLayout">
 <div id="shoppingCart" class="shoppingCart">
 <h2>Enter your credit card details below:</h2>
 <div id="shippingForm" class="formDialog">
 <g:hasErrors bean="${creditCard}">
 <div class="errors">
 <g:renderErrors bean="${creditCard}"></g:renderErrors>
 </div>
 </g:hasErrors>
 ...
 </div>
 </div>
</g:applyLayout>

Figure 9-8 shows the error messages being rendered to the view. You’ll probably need to
use one of your own credit cards to get past Grails’ credit-card number validator!

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 235

Figure 9-8. Validating credit card details

Dynamic Transitions
Before we move on from the enterCardDetails view state, you need to implement the back
event that allows the user to return to the previous screen. Using a static event name to transi-
tion back to the showRecommendations event doesn’t make sense because there might not have
been any recommendations. Also, if the user wanted the Album to be shipped as a CD, then the
previous screen was actually the enterShipping view state!

In this scenario, you need a way to dynamically specify the state to transition to, and luck-
ily Grails’ Web Flow support allows dynamic transitions by using a closure as an argument to
the to method. Listing 9-44 presents an example of a dynamic transition that checks whether
there are any recommendations, and transitions back to the showRecommendations state if there
are. Alternatively, if there are no recommendations and the lastAlbum purchased has a ship-
ping Address, the dynamic transition goes back to the enterShipping state. Otherwise, it goes
back to the requireHardCopy state.

236 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Listing 9-44. Using Dynamic Transitions to Specify a Transition Target State

enterCardDetails {
 ..
 on('back').to {
 def view
 if(flow.genreRecommendations || flow.userRecomendations)
 view = "showRecommendations"
 else if(flow.lastAlbum.shippingAddress) {
 view = 'enterShipping'
 }
 else {
 view = 'requireHardCopy'
 }
 return view
 }
}

Notice how the name of the view to transition to is the return value of the closure passed
to the to method. In other words, the following three examples are equivalent, with each tran-
sitioning to the enterShipping state:

on('back').to 'enterShipping' // static String name
on('back').to { 'enterShipping' } // Groovy optional return
on('back').to { return 'enterShipping' } // Groovy explicit return

Verifying Flow State with Assertions
Okay, you’re on the home stretch. You’ve reached the showConfirmation view state, which is
the final view state that engages the user for input. Listing 9-45 shows the GSP code for the
showConfirmation.gsp view.

Listing 9-45. The showConfirmation.gsp View

<g:applyLayout name="storeLayout">
 <div id="shoppingCart" class="shoppingCart">
 <h2>Your Purchase</h2>
 <p>You have the following items in your cart that you wish to Purchase. </p>

 <g:each in="${albumPayments}" var="albumPayment">

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 237

 ${albumPayment.album.artist.name} - ${albumPayment.album.title}

 Cost: $ ${albumPayment.album.price}

 </g:each>

 <g:set var="totalAmount">
 <g:formatNumber
 number="${albumPayments.album.price.sum()}"
 format="0.00" /></g:set>
 <p>Total: $ ${totalAmount}</p>

 <h2>Card Details</h2>
 <p>The following card details will be used to process this transaction:</p>
 <div class="cardDetails">

 Name: ${creditCard?.name}
 Number: ${creditCard?.number}
 Expiry: ${creditCard?.expiry}
 Security Code: ${creditCard?.code}

 </div>
 <div class="formButtons">
 <g:link controller="store" action="buy" event="back">
 <img src="${createLinkTo(dir:'images',file:'back-button.gif')}"
 border="0">
 </g:link>
 <g:link controller="store" action="buy" event="confirm">
 <img src="${createLinkTo(dir:'images',file:'confirm-button.gif')}"
 border="0">
 </g:link>
 </div>
 </div>
</g:applyLayout>

When rendered, the showConfirmation view will display a summary of the transaction the
user is about to complete, including all the albums to be purchased, the total price, and the
credit-card details. Figure 9-9 shows the showConfirmation view in all its glory.

238 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Figure 9-9. Confirming the user’s purchase

So the user can trigger one of two events from the showConfirmation view state: confirm or
back. The confirm event is where you can implement our transaction processing. To keep the
example simple (both in terms of code brevity and later distribution), we’re not going to delve
into implementing a true e-commerce solution. We’ll just happily assume that payments go
through without a hitch.

■Tip If you want to integrate an e-commerce solution, try the PayPal plugin for Grails at http://
grails.org/Paypal+Plugin.

The confirm state, however, will help you learn how to use assertions inside a flow defini-
tion to validate flow state. Remember: by the time the user clicks the “confirm” button, the flow
should be in the correct state. If it is not, you probably have an error in your code, which is
something assertions exist to solve. Listing 9-46 shows the confirm event and the transition
action that deals with taking payments (or not, as the case may be).

Listing 9-46. Using a Transition Action to Confirm the Purchase

1 showConfirmation {
2 on('confirm') {
3 def user = flow.user
4 def albumPayments = flow.albumPayments
5 def p = new Payment(user:user)
6 flow.payment = p
7 p.invoiceNumber = "INV-${user.id}-${System.currentTimeMillis()}"
8 def creditCard = flow.creditCard
9 assert creditCard.validate()
10 // TODO: Use credit card to take payment

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 239

11 // ...
12
13 // Once payment taken update user profile
14 for(ap in albumPayments) {
15 ap.user = user
16 // validation should never fail at this point
17 assert ap.validate()
18
19 p.addToAlbumPayments(ap)
20 assert p.save()
21
22 ap.album.songs.each { user.addToPurchasedSongs(it) }
23 user.addToPurchasedAlbums(ap.album)
24 assert user.save(flush:true)
25 }
26 }.to 'displayInvoice'
27 ...
28 }

On lines 9, 17, 20, and 24 assertions are used via Groovy’s built-in assert keyword, to vali-
date the state of the flow. You should not be getting validation errors by the time the flow
reaches this transition action; if you are, there is a problem with the code in the flow prior to the
showConfirmation view state.

As for the rest of the code in Listing 9-46, on lines 5 through 7 a new Payment instance is cre-
ated, placed in the flow, and assigned a generated invoice number:

5 def p = new Payment(user:user)
6 flow.payment = p
7 p.invoiceNumber = "INV-${user.id}-${System.currentTimeMillis()}"

Then on line 10, there is a “to-do” item for when you actually start processing credit-card
details. Once the credit card has been processed, on lines 19 and 20 each AlbumPayment is added
to the Payment instance, which is then saved through a call to the save() method:

19 p.addToAlbumPayments(ap)
20 assert p.save()

Finally, on lines 22 through 24 the User is updated. The code adds each of the songs from
the Album purchased to her list of purchasedSongs and adds the Album itself to her list of
purchasedAlbums:

22 ap.album.songs.each { user.addToPurchasedSongs(it) }
23 user.addToPurchasedAlbums(ap.album)
24 assert user.save(flush:true)

If all goes well, the confirm event of the showConfirmation view state will transition to the
displayInvoice end state. The displayInvoice end state will attempt to render a view located at
grails-app/views/store/buy/displayInvoice.gsp. The displayInvoice.gsp view is a simple GSP
that displays a summary of the user’s just-processed transaction along with her invoice number

240 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

for future reference. For completeness, we’ve included the code for displayInvoice.gsp (see
Listing 9-47).

Listing 9-47. The displayInvoice.gsp End State View

<g:applyLayout name="storeLayout">
 <div id="invoice" class="shoppingCart">
 <h2>Your Receipt</h2>
 <p>Congratulations you have completed your purchase.
 Those purchases that included shipping will ship
 within 2-3 working days.
 Your digital purchases have been transferred into your library</p>
 <p>Your invoice number is ${payment.invoiceNumber}</p>
 <h2>Purchased Items</h2>

 <g:each in="${albumPayments}" var="albumPayment">
 ${albumPayment.album.artist.name} –
 ${albumPayment.album.title}

 Cost: $ ${albumPayment.album.price}

 </g:each>

 <p>Total: ${albumPayments.album.price.sum()}</p>
 </div>
</g:applyLayout>

The user will see the unusually short invoice displayed, as depicted in Figure 9-10 (the
legal department hasn’t got hold of it yet).

Figure 9-10. Displaying an invoice

And with that, you have completed the gTunes checkout flow! Listing 9-48 shows the code
for the complete flow you developed over the course of this chapter.

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 241

Listing 9-48. The Finished buyFlow Code

def buyFlow = {
 start {
 action {
 // check login status
 if(session.user) {
 flow.user = User.get(session.user.id)
 return success()
 }
 login()
 }
 on('success', addAlbumToCartAction).to 'requireHardCopy'
 on('login') {
 flash.album = Album.get(params.id)
 flash.message = "user.not.logged.in"
 }.to 'requiresLogin'
 }
 requireHardCopy {
 on('yes') {
 if(!flow.shippingAddresses)
 flow.shippingAddress = new Address()
 }.to 'enterShipping'
 on('no') {
 flow.shippingAddress = null
 }.to 'loadRecommendations'
 }
 enterShipping {
 on('next') {
 def address = flow.shippingAddress
 address.properties = params
 if(address.validate()) {
 flow.lastAlbum.shippingAddress = address
 return success()
 }
 return error()
 }.to 'loadRecommendations'
 on('back') {
 flow.shippingAddress.properties = params
 }.to 'requireHardCopy'
 }
 loadRecommendations {
 action {
 if(!flow.genreRecommendations) {
 def albums = flow.albumPayments.album
 def genres = albums.genre
 flow.genreRecommendations = Album.withCriteria {
 inList 'genre', genres

242 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

 not {
 inList 'id', albums.id
 }
 maxResults 4
 order 'dateCreated', 'desc'
 }
 }
 if(!flow.userRecommendations) {
 def albums = flow.albumPayments.album
 def otherAlbumPayments = AlbumPayment.withCriteria {
 user {
 purchasedAlbums {
 inList 'id', albums.id
 }
 }
 not {
 eq 'user', flow.user
 inList 'album', albums
 }
 maxResults 4
 }
 flow.userRecommendations = otherAlbumPayments.album
 }
 if(!flow.genreRecommendations && !flow.userRecommendations) {
 return error()
 }
 }
 on('success').to 'showRecommendations'
 on('error').to 'enterCardDetails'
 on(Exception).to 'enterCardDetails'
 }
 showRecommendations {
 on('addAlbum', addAlbumToCartAction).to 'requireHardCopy'
 on('next').to 'enterCardDetails'
 on('back').to { flow.shippingAddress ? 'enterShipping' : 'requireHardCopy' }
 }
 enterCardDetails {
 on('next') { CreditCardCommand cmd ->
 flow.creditCard = cmd
 cmd.validate() ? success() : error()
 }.to 'showConfirmation'
 on('back').to {
 def view
 if(flow.genreRecommendations || flow.userRecomendations)
 view = "showRecommendations"
 else if(flow.lastAlbum.shippingAddress) {
 view = 'enterShipping'

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 243

 }
 else {
 view = 'requireHardCopy'
 }
 return view
 }
 }
 showConfirmation {
 on('confirm') {
 def user = flow.user
 def albumPayments = flow.albumPayments
 def p = new Payment(user:user)
 flow.payment = p
 p.invoiceNumber = "INV-${user.id}-${System.currentTimeMillis()}"
 def creditCard = flow.creditCard
 assert creditCard.validate()
 // TODO: Use credit card to take payment
 // ...

 // Once payment taken update user profile
 for(ap in albumPayments) {
 ap.user = user
 // validation should never fail at this point
 assert ap.validate()

 p.addToAlbumPayments(ap)
 assert p.save(flush:true)

 ap.album.songs.each { user.addToPurchasedSongs(it) }
 user.addToPurchasedAlbums(ap.album)
 assert user.save(flush:true)
 }
 }.to 'displayInvoice'
 on('back').to 'enterCardDetails'
 on('error').to 'displayError'
 on(Exception).to 'displayError'
 }
 requiresLogin {
 redirect(controller:"album",
 action:"show",
 id: flash.album.id,
 params:[message:flash.message])
 }
 displayInvoice()
 displayError()
}

244 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

Testing Flows
As you’ve seen through the course of this chapter, flows deal with the specific challenge of tak-
ing the user through a multistep process. It should come as no surprise that in order to test
flows, you must use a specialized test harness called grails.test.WebFlowTestCase. Through-
out the remainder of this section, we’ll show you how to use WebFlowTestCase to test flow
interactions effectively.

As of this writing, WebFlowTestCase cannot be used in a regular unit test. So you need to
create an integration test by running the create-integration-test command:

$ grails create-integration-test com.g2one.gtunes.StoreBuyFlow

You’ll end up with a new test suite in the test/integration/com/g2one/gtunes directory
called StoreBuyFlowTests.groovy. Currently, the StoreBuyFlowTests suite extends the vanilla
GroovyTestCase superclass. You’ll need to change it to extend the WebFlowTestCase test harness
instead, as shown in Listing 9-49.

Listing 9-49. Extending the WebFlowTestCase Test Harness

package com.g2one.gtunes
import grails.test.*
class StoreBuyFlowTests extends WebFlowTestCase {
 ...
}

The next thing to do is provide an implementation of the abstract getFlow() method that
returns a closure that represents the flow. Listing 9-50 shows how this is done for the buyFlow
you developed earlier.

Listing 9-50. Implementing the getFlow() Method

class StoreBuyFlowTests extends WebFlowTestCase {
 ...
 def controller = new StoreController()
 def getFlow() {
 controller.buyFlow
 }
}

Now it’s time to consider the first test to implement. Recall from Listing 9-18 that if the
user is not logged in, the flow ends by sending a redirect in the requiresLogin end state.
Listing 9-51 shows how to test whether a user is logged in.

Listing 9-51. Testing if the User is Logged In

1 void testNotLoggedIn() {
2 MockUtils.mockDomain(Album, [new Album(title:"Aha Shake Heartbreak", id:1L)])
3 controller.params.id = 1

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 245

4 startFlow()
5
6 assertFlowExecutionEnded()
7 assertFlowExecutionOutcomeEquals 'requiresLogin'
8 }

We’ve demonstrated a few key concepts in this simple test. First, notice how you can use
the mockDomain method of MockUtils to provide some mock data on line 2:

2 MockUtils.mockDomain(Album, [new Album(title:"Aha Shake Heartbreak", id:1L)])

Then on line 3, you can specify the id of the Album instance that will be looked up in the
start action of the buyFlow:

3 controller.params.id = 1

In this example, we’re using an id that matches the id of the mock Album passed to the
mockDomain method on line 2. Then to trigger flow execution, you can invoke the startFlow()
method on line 4:

4 startFlow()

With one simple method, the flow execution will begin and proceed to execute the start
state of the buyFlow. If you recall, the start state is an action state that checks whether the user
is logged in by inspecting whether a User instance exists in the session object. If a user doesn’t
exist in the session object, the requiresLogin state is triggered, which terminates the flow and
redirects to another action. Line 6 checks that the flow has been terminated, by calling the
assertFlowExecutionEnded method:

6 assertFlowExecutionEnded()

On line 7 the assertFlowExecutionOutcomeEquals method is called to ensure that requiresLogin is
the end state of the flow:

7 assertFlowExecutionOutcomeEquals 'requiresLogin'

As you can see, the WebFlowTestCase test harness provides a number of new methods, such
as startFlow and assertFlowExecutionEnded, that allow you to manipulate flow execution. The
following list summarizes the key extensions to the GroovyTestCase API and what they do:

• assertFlowExecutionActive(): Asserts that the flow hasn’t terminated by reaching an
end state

• assertFlowExecutionEnded(): Asserts that the flow has been terminated by reaching an
end state

• assertFlowExecutionOutcomeEquals(String): Asserts that the outcome (the name of the
end state) is equal to the given value

• assertCurrentStateEquals(String): Asserts that the current state in an active flow is
equal to the specified value

246 C H A P T E R 9 ■ C R E A T I N G W E B F L O W S

• startFlow(): Starts a new flow execution

• signalEvent(String): Triggers a flow-execution event for the given name when the flow
has paused (for example, at a view state)

• setCurrentState(String): Starts a flow execution and sets the current state to the spec-
ified value

Of course, all the regular JUnit assertions are available in addition to those we just
mentioned. One key method is the setCurrentState(String) method, which allows you
to easily test just parts of a flow. For example, say you wanted to test only the process of
entering the shipping address for a purchased album. Listing 9-52 shows how to use the
setCurrentState(String) method to move the flow forward to a particular point.

Listing 9-52. Using setCurrentState(String) to Transition to a Particular State

void testEnterShippingAddress() {
 currentState = "requireHardCopy"
 signalEvent "yes"
 assertCurrentStateEquals "enterShipping"
 signalEvent "back"
 assertCurrentStateEquals "requireHardCopy"
 signalEvent "yes"
 assertCurrentStateEquals "enterShipping"
 signalEvent "next"
 assertCurrentStateEquals "enterShipping"
 ...
}

The example in Listing 9-52 sets the currentState to requireHardCopy. The next trick is to
use the signalEvent(String) method to transition from one state to the next. Notice how the
code in Listing 9-52 uses signalEvent(String) followed by assertCurrentStateEquals(String)
to assert that the web flow is transitioning states as expected.

Now note one of the other aspects of the enterShipping state from Listing 9-26: it presents
an example of using data binding to populate the Address class. In Listing 9-52, when you try to
trigger the next event, the flow transitions back to the enterShipping state because the Address
object doesn’t validate. Listing 9-53 shows how to build on testEnterShippingAddress to test
whether a valid Address object is provided.

Listing 9-53. Testing Data Binding in Flows

1 void testEnterShippingAddress() {
2 ...
3 signalEvent "next"
4 assertCurrentStateEquals "enterShipping"
5 def model = getFlowScope()
6
7 def errors = model.shippingAddress?.hasErrors()
8 assertNotNull errors

C H A P T E R 9 ■ C R E A T I N G W E B F LO W S 247

9 assertTrue errors
10
11 model.lastAlbum = new AlbumPayment(album:new Album(title:"Aha Shake Heartbreak"))
12 model.albumPayments = [model.lastAlbum]
13 controller.params.number = "10"
14 controller.params.street = "John Doe Street"
15 controller.params.city = "London"
16 controller.params.state = "Greater London"
17 controller.params.postCode = "W134G"
18 controller.params.country = "United Kingdom"
19 assertNotNull model.shippingAddress
20 signalEvent "next"
21 assertCurrentStateEquals "enterCardDetails"
22 def shippingAddress = model.shippingAddress
23
24 assertNotNull shippingAddress
25 assertTrue shippingAddress.validate()
26 }

The example in Listing 9-53 shows a number of useful techniques. First, it tests failed vali-
dation by triggering the next event (without populating parameters for the Address object) and
obtaining the model from flow scope using the getFlowScope() method on lines 5 through 9.
Then on lines 13 to 18, you can see how to use the controller instance to populate the params
object in order for data binding to work effectively. The result is that when the next event is trig-
gered, validation succeeds and state transitions to the enterCardDetails state instead of back
to enterShipping.

As you develop the test coverage for your flows, you might need to mock out data-access
methods provided by GORM as described in Chapter 10, but overall WebFlowTestCase makes
testing flows a lot easier through the provided utility methods.

Summary
Don’t be shocked: you have in fact reached the end of the web flow chapter! You’ve learned a
great deal, from the different state types—action, view, redirect—to events and transitions.
Along the way, you’ve completed a pretty comprehensive web flow example by implementing
the checkout process for the gTunes application.

We should point out one thing: web flow is not the answer to every problem. For the
majority of tasks you face on a day-to-day basis, regular controllers and actions do the job just
fine. There’s a particular subset of problems that involve taking the user through sequential
steps that cannot be compromised, and that’s where web flow really shines.

A couple of this chapter’s examples in which you used criteria queries touched on the
untapped power that is GORM. Never fear; our journey into the world of GORM has only just
begun. In the next chapter, we’ll jump head first into understanding what else GORM has to
offer on the persistence front.

249

■ ■ ■

C H A P T E R 1 0

GORM

As you may have garnered from the table of contents for this book, with no fewer than three
chapters dedicated to the subject, the persistence layer of Grails is a critical part of the picture.
In Chapter 3, you obtained a surface-level understanding about what domain classes are and
how they map onto the underlying database. In this chapter, you’re going to plunge headfirst
into understanding the inner workings of GORM.

As a starting point, you’ll learn about the basic persistence operations involved in read-
ing and writing objects from a database. After going through the basics, you’ll then be taken
through the semantics of GORM including as many corner cases and surprises as we’re able
to fit into a single chapter.

Persistence Basics
Fortunately, we won’t be spending too long on the foundations, since you’ve already been
exposed to the basic GORM methods as early as Chapter 2, where we took you through the gen-
erated scaffolding code. Since then, you’ve been exposed to various aspects of GORM from
dynamic finders to the criteria queries used in Chapter 9.

Nevertheless, as a recap, let’s take a look at the basic read operations provided by GORM.

Reading Objects
Each domain class is automatically enhanced, via metaprogramming, with a number of meth-
ods that allow you to query for domain instances. The simplest of these is the get method,
which takes the identifier of a domain class and returns either an instance or null if no instance
was found in the database. Listing 10-1 shows a simple example, highlighted in bold, from the
AlbumController you’ve already developed.

Listing 10-1. Using the get Method

class AlbumController {
 def show = {
 def album = Album.get(params.id)

250 C H A P T E R 1 0 ■ G O R M

 if(album) {
 ...
 }
 ...
 }
}

In addition to the simple get method, there is also a getAll method that can take several
identifiers and return a List of instances. You can specify the identifiers as a List or using
varargs, for example:

def albums = Album.getAll(1,2,3)

When using the get method, the object is loaded from the database in a modifiable state.
In other words, you can make changes to the object, which then get persisted to the database.
If you want to load an object in a read-only state, you can use the read method instead:

def album = Album.read(params.id)

In this case, the Album instance returned cannot be modified. Any changes you make to the
object will not be persisted.

Listing, Sorting, and Counting
A common way to retrieve items from a database is to simply list them. Clearly, it is not always
desirable to list every instance, and the order in which they are returned is often important.
GORM provides a list() method, which takes a number of named arguments such as max,
offset, sort, and order to customize the results, the definitions of which are listed here:

• max: The maximum number of instances to return

• offset: The offset relative to 0 of the first result to return

• sort: The property name to sort by

• order: The order of the results, either asc or desc for ascending and descending order,
respectively

In addition to list(), and often used in combination with it, is the count() method, which
counts the total number of instances in the database. To demonstrate these, let’s look at some
examples of their usage, as shown in Listing 10-2.

Listing 10-2. Using the list() Method

// get all the albums; careful, there might be many!
def allAlbums = Album.list()
// get the ten most recently created albums
def topTen = Album.list(max:10, sort:'dateCreated', order:'desc')
// get the total number of albums
def totalAlbums = Album.count()

C H A P T E R 1 0 ■ G O R M 251

As you can imagine, it is fairly trivial to use the list() method to perform the pagination of
results simply by customizing the offset argument. In addition, there is a set of listOrderBy*
methods that are variations on the list() method.

The listOrderBy* methods provide an example where each method uses the properties
on the class itself in the method signatures. They are unique to each domain class, but it is
just a matter of understanding the convention to use them. Listing 10-3 presents an example
that lists all Album instances, ordered by the dateCreated property, simply by invoking the
listOrderByDateCreated()method.

Listing 10-3. Using listOrderBy

// all albums ordered by creation date
def allByDate = Album.listOrderByDateCreated()

Using standard bean conventions, the property name is appended to the end of the
method signature starting with a capital letter. You’ll see more examples of this later in
the chapter when we cover dynamic finders, including a variation of the count method.

Saving, Updating, and Deleting
As you’ve seen already, objects can be persisted by calling the save() method. For example, the
code in Listing 10-4 demonstrates how to persist an instance of the Album class, assuming it val-
idates successfully.

Listing 10-4. Saving an Instance

def album = new Album(params)
album.save()

We’ll have more to say about how GORM persists objects to the database in “The Seman-
tics of GORM” later in this chapter. For now, all you need to know is that at some point the
underlying Hibernate engine will execute a SQL INSERT to persist the Album instance to the
database. Updating objects is strikingly similar because doing so involves calling the same
save() method on an existing persistent instance, as shown in Listing 10-5.

Listing 10-5. Updating an Instance

def album = Album.get(1)
album.title = "The Changed Title"
album.save()

When the save() method is called, Hibernate automatically works out whether it should
issue a SQL INSERT or a SQL UPDATE. Occasionally, on certain older databases, Hibernate may
get this decision wrong and issue an UPDATE when it should be doing an INSERT. You can get
around this by passing an explicit insert argument to the save() method:

album.save(insert:true)

252 C H A P T E R 1 0 ■ G O R M

As for deleting objects, this is done with the delete() method:

album.delete()

So, that’s the simple stuff. Next you’ll be looking in more detail at associations in GORM
and how those work.

Associations
Chapter 3 already provided some detail on associations in GORM in their different incarna-
tions, but there is a lot more to the associations that GORM supports. In a typical one-to-many
association such as the songs property of the Album class, the type is a java.util.Set. If you
recall the semantics of Set as defined by javadoc, they don’t allow duplicates and have no
order. However, you may want an association to have a particular order.

One option is to use a SortedSet, which requires you to implement the Comparable inter-
face for any item placed into the SortedSet. For example, Listing 10-6 shows how to sort tracks
by the trackNumber property.

Listing 10-6. Using SortedSet to Sort Associations

class Album {
 ...
 SortedSet songs
}
class Song implements Comparable {
 ..
 int compareTo(o) {
 if(this.trackNumber > o.trackNumber)
 return 1
 elseif(this.trackNumber < o.trackNumber)
 return -1
 return 0
 }
}

Alternatively, you can specify the sort order declaratively using the mapping property intro-
duced in Chapter 3. For example, if you wanted to sort Song instances by track number for all
queries, you can do so with the sort method:

class Song {
 ...
 static mapping = {
 sort "trackNumber"
 }
}

C H A P T E R 1 0 ■ G O R M 253

You may not want to sort by the trackNumber property for every query or association, in
which case you can apply sorting to the songs association of the Album class only:

static mapping = {
 songs sort: "trackNumber"
}

Another way to change the way sorting is done is to use a different collection type such as
java.util.List. Unlike a Set, a List allows duplicates and retains the order in which objects
are placed into the List. To support List associations, Hibernate uses a special index column
that contains the index of each item in the List. Listing 10-7 shows an example of using a List
for the songs association.

Listing 10-7. Using a List Association

class Album {
 ...
 List songs
}

Unlike Set associations, which have no concept of order, with a List you can index into a
specific entry, for example:

println album.songs[0]

Finally, GORM also supports Map associations where the key is a String. Simply change the
type from List to Map in the example in Listing 10-7 and use a String instead of an Integer to
access entries. For both List and Map collection types, Grails creates an index column. In the
case of a List, the index column holds a numeric value that signifies its position in the List,
while for a Map the index column holds the Map key.

Relationship Management Methods
As well as giving you the ability to map associations to the database, GORM also automati-
cally provides you with methods to manage those associations. The addTo* and removeFrom*
dynamic methods allow you to add and remove entries from an association. Additionally,
both methods return the instance they are called on, thus allowing you to chain method
calls. Listing 10-8 shows an example of using the addToSongs method of the Album class.

Listing 10-8. Using Relationship Management Methods

new Album(title:"Odelay",
 artist:beck
 year:1996)
 .addToSongs(title:"Devil's Haircut", artist:beck, duration:342343)
 .addToSongs(title:"Hotwax", artist:beck, duration:490583)
 ...
 .save()

254 C H A P T E R 1 0 ■ G O R M

As you can see from the example, you can pass just the values of the Song as named param-
eters to the addToSongs method, and GORM will automatically instantiate a new instance and
add it to the songs association. Alternatively, if you already have a Song instance, you can sim-
ply pass that into the addToSongs method.

Transitive Persistence
Whenever you save, update, or delete an instance in GORM, the operation can cascade to any
associated objects. The default cascade behavior in GORM is dictated by the belongsTo property
first discussed in Chapter 3. For example, if the Song class belongsTo the Album class, then when-
ever an Album instance is deleted, all of the associated Song instances are deleted too. If there is no
belongsTo definition in an association, then saves and updates cascade, but deletes don’t.

If you need more control over the cascading behavior, you can customize it using the
cascade method of the mapping block, as shown in Listing 10-9.

Listing 10-9. Customizing the Cascading Behavior

class Album {
 ...
 static mapping = {
 songs cascade:'save-udpate'
 }
}

A special cascade style called delete-orphan exists for the case where you want a child
object to be deleted if it is removed from an association but not deleted explicitly.

■Tip For more information on the different cascade options available, take a look at the related section in
the Hibernate documentation at http://www.hibernate.org/hib_docs/reference/en/html_single/
#objectstate-transitive.

Querying
Pretty much every nontrivial application will need to query persistent data. With the underly-
ing storage medium of choice being the database, the typical way to achieve this historically
has been with SQL. Relational database systems with their tables and columns are significantly
different enough from Java objects that abstracting data access has been a long-term struggle
for many an ORM vendor.

Hibernate provides an elegant enough Java API for querying objects stored in a data-
base, but GORM moves up to the next level by completely abstracting the majority of data
access logic. Don’t expect to see many dependencies on the org.hibernate package in your
codebase, because GORM nicely abstracts the details of interaction with Hibernate. In the

C H A P T E R 1 0 ■ G O R M 255

next few sections, we’ll cover the different ways you can query with GORM, from dynamic
finders to criteria GORM.

Dynamic Finders
Dynamic finders are among the most powerful concepts of GORM; as with the previously men-
tioned listOrderBy* method, they use the property names of the class to perform queries.
However, they are even more flexible than this, because they allow logical queries such as And,
Or, and Not to form so-called method expressions. There can be hundreds of combinations for
any given class, but, again, they’re fairly simple to remember if you know the convention. Let’s
look at an example findBy* method first, shown in Figure 10-1, which locates a unique instance
for the specified method expression.

Figure 10-1. Basic dynamic finder syntax

The diagram uses the title and genre properties to look up an Album instance. There is a
logical And expression in the middle to ensure both values need to be equal in the query. This
could be replaced with a logical Or to look up a Album that either has a title of Beck or has a
genre of Alternative.

We have, however, only brushed on what is possible with dynamic finders and method
expressions. Dynamic finders support a wide range of expressions that allow GreaterThan/
LessThan, Like, and Between queries, to name just a few, simply by appending an additional
expression on the end of the property name. Listing 10-10 shows some of these in action.

Listing 10-10. Dynamic Finders in Action

// retrieve an album where the title contains 'Shake'
def album = Album.findByTitleLike('%Shake%')
// get a album created in last 10 days
def today = new Date()
def last10Days = Album
 .findByDateCreatedBetween(today-10,today)
// first album that is not 'Rock'
def somethingElse = Album
 .findByGenreNotEqual('Rock')

256 C H A P T E R 1 0 ■ G O R M

Table 10-1 illustrates all the possible expressions that can be appended, the number of
arguments they expect, and an example of each in action.

The findBy* method has two cousins that accept the same method expressions you’ve
already seen. The first is findAllBy*, which retrieves all the instances that match the method
expression as a java.util.List. Finally, there is the countBy* method that returns the total
number of instances found by the method expression as an integer. It is worth opening up the
Grails console, by typing grails console in a command window, and playing with these meth-
ods to experiment with the different combinations and discover just how easy they are to use.

You’ll find that GORM’s dynamic finders pretty much eliminate the need for a Data Access
Object (DAO) layer, which you typically need in Java applications. Remember those? No? OK,
well, the process is something like this:

1. Define an interface for the data access logic. The signatures will look strikingly like the
dynamic finder methods you’ve seen so far.

2. Implement the interface using a Java class.

3. Using Spring, or your IoC container of choice, to wire in dependencies such as the data
source or Hibernate Session.

If you think about it, data access logic is extremely repetitive and heavily violates the
DRY principles Grails is founded on. Luckily, with GORM and its dynamic finders, you can
forget the DAO.

In the next section, you’ll explore how Grails makes criteria more accessible via concise
builder syntax.

Table 10-1. Available Dynamic Finder Method Expressions

Expression Arguments Example

Between 2 Album.findByDateCreatedBetween(today-10,today)

Equals 1 Album.findByTitleEquals('Aha Shake Heartbreak')

GreaterThan 1 Album.findByDateCreatedGreaterThan(lastMonth)

GreaterThanOrEqual 1 Album.findByDateCreatedGreaterThanOrEqual(lastMonth)

InList 1 Album.findByTitleInList(['Aha Shake Heartbreak',
'Odelay'])

IsNull 0 Album.findByGenreIsNull()

IsNotNull 0 Album.findByGenreIsNotNull()

LessThan 1 Album.findByDateCreatedLessThan(lastMonth)

LessThanOrEqual 1 Album.findByDateCreatedLessThanOrEqual(lastMonth)

Like 1 Album.findByTitleLike('Shake')

NotEqual 1 Album.findByTitleNotEqual('Odelay")

C H A P T E R 1 0 ■ G O R M 257

Criteria Queries
Possibly one of the most powerful mechanisms for querying is with criteria. Criteria use a
builder syntax for creating queries using Groovy’s builder support. A builder in Groovy is
essentially a hierarchy of method calls and closures that is perfect for “building” tree-like
structures such as XML documents or a graphical user interface (GUI). Builders are also good
candidates for constructing queries, particularly dynamic queries, which are often con-
structed with the horrifically error-prone StringBuffer.

The Hibernate Criteria API is meant to reduce the risk of errors by providing a program-
matic way to construct “criteria” queries. However, Groovy’s expressive syntax and powerful
metaprogramming support has taken this to a new level of conciseness. Let’s start by looking
at basic usage patterns of criteria, after which we can move on to some more advanced
examples.

Before you can perform a criteria query, you need a criteria instance for the class you want
to query. To facilitate this, GORM provides a createCriteria static method on each domain
class. Once you have acquired the criteria instance, one of four methods can be invoked, each
of which expects a closure argument:

• get: Locates a unique instance for the query

• list: Returns a list of instances for the query

• scroll: Returns a ScrollableResults instance for the query

• count: Returns the total results as an integer for the query

The most common use case is to use the list() method on the criteria instance to perform
the query, as shown in Listing 10-11.

Listing 10-11. A Simple Criteria Query

def c = Album.createCriteria()
def results = c.list {
 eq('genre', 'Alternative')
 between('dateCreated', new Date()-30, new Date())
}

The previous example lists all the Album instances with a genre of Alternative created in
the past 30 days. The nested method calls within the closure block translate into method calls
on Hibernate’s org.hibernate.criterion.Restrictions class, the API for which is too long to
list here. Nevertheless, the eq and between methods shown here are just two of many for per-
forming all the typical queries found in query languages such as SQL and HQL.

It is worth taking a look at the API on the Hibernate web site (http://www.hibernate.org/
hib_docs/v3/api/org/hibernate/criterion/Restrictions.html) to see what is available and to
get a better understanding of the power that is at your fingertips. Of course, you can accom-
plish queries similar to those in Listing 10-11 with dynamic finder methods. What you haven’t
really explored is the power of closures and building the query up dynamically.

Consider for the moment that a closure is just a block of code and can be assigned to a
variable. Also, consider that a closure can reference variables within its enclosing scope. Put

258 C H A P T E R 1 0 ■ G O R M

the two together, and you have a pretty powerful mechanism for reusing dynamically con-
structed queries.

As an example, say you have a map whose keys define the property names to be queried,
and the values define the value such as the params object provided by Grails controllers. A
query could easily be built up from this map and assigned to a variable. Listing 10-12 provides
an example of this concept in action.

Listing 10-12. Dynamic Querying with Criteria

1 def today = new Date()
2 def queryMap = [genre: 'Alternative', dateCreated: [today-10,today]]
3 def query = {
4 // go through the query map
5 queryMap.each { key, value ->
6 // if we have a list assume a between query
7 if(value instanceof List) {
8 // use the spread operator to invoke
9 between(key, *value)
10 }
11 else {
12 like(key,value)
13 }
14 }
15 }
16
17 // create a criteria instance
18 def criteria = Album.createCriteria()
19
20 // count the results
21 println(criteria.count(query))
22
23 // reuse again to get a unique result
24 println(criteria.get(query))
25
26 // reuse again to list all
27 criteria.list(query).each { println it }
28
29 // use scrollable results
30 def scrollable = criteria.scroll(query)
31 def next = scrollable.next()
32 while(next) {
33 println(scrollable.getString('title'))
34 next = scrollable.next()
35 }

That’s a fairly long example that includes some fairly advanced concepts. To simplify your
understanding of it, we’ve included line numbers, and we’ll go through it step-by-step. The
first two lines in the following code define a date instance from the current time and a map

C H A P T E R 1 0 ■ G O R M 259

using Groovy’s map syntax that will dictate which properties you’re going to query. The map’s
keys are the property names to query, and the values define the value to query by:

1 def today = new Date()
2 def queryMap = [genre: 'Alternative', dateCreated: [today-10,today]]

■Tip In the previous code example, to calculate the date range to be the past ten days, we took a
java.util.Date instance and subtracted ten from it. This is an example of Groovy’s operator overloading
feature used to simplify date operations.

On line 3 a closure is assigned to the query variable, which will be used in conjunction
with the criteria. The closure’s closing bracket is on line 15, but some important stuff is going
on in the body of the closure:

3 def query = {
 ...
15 }

First, a built-in GDK method called each is used to loop over each entry in the Map. Essen-
tially, the method iterates through each element in the map and passes the key and value to the
passed closure as arguments.

5 queryMap.each { key, value ->
 ...
14 }

Next up, the familiar instanceof operator is used to check whether the value passed is a
List. If the value passed is a List, you can invoke the between method passing the key and the
value. The value is split into two arguments using Groovy’s * spread operator:

7 if(value instanceof List) {
8 // use the spread operator to invoke
9 between(key, *value)
10 }
11 else {
12 like(key,value)
13 }

The * spread operator’s job is to split apart a List or an array and pass the separated values
to the target. In this case, the between method, which actually takes three arguments, not two,
is correctly called, with the first element of the list being the second argument and with the sec-
ond element being the third argument.

Now let’s start to look at how the query, in the form of a closure, works with a criteria
instance as a reusable code block. As usual, of course, you have to create the criteria instance,
which is accomplished on line 18:

18 def criteria = Album.createCriteria()

260 C H A P T E R 1 0 ■ G O R M

The various methods of the criteria instance are then utilized using the same closure:

21 println(criteria.count(query))
24 println(criteria.get(query))
27 criteria.list(query).each { println it }

The first, on line 21, counts all the results for the query; the next prints out a unique result
(if there is one), and finally, the last lists all the results for the query and then iterates through
them with the already encountered each method printing each one to standard out.

There is one more usage on line 30, which uses the scroll method on criteria. This returns
an instance of the Hibernate class called org.hibernate.ScrollableResults, which has a simi-
lar interface to a JDBC java.sql.ResultSet and shares many of the same methods. One major
difference, however, is that the columns of results are indexed from 0 and not 1 as in JDBC.

Querying Associations with Criteria

Often it is useful to execute a query that uses the state of an association as its criterion. So far,
you have performed queries against only a single class and not its associations. So, how do you
go about querying an association?

Grails’ criteria builder allows querying associations by using a nested criteria method call
whose name matches the property name. The closure argument passed to the method contains
nested criteria calls that relate to the association and not the criteria class. For example, say you
wanted to find all albums that contain the word Shake. The criteria shown in Listing 10-13 would
do this.

Listing 10-13. Querying Associations with Criteria

def criteria = Album.withCriteria {
 songs {
 ilike('title', '%Shake%')
 }
}

This is a fairly trivial example, but all the criteria you’ve seen so far can be nested within the
nested songs method call in the code listing. Combine this with how criteria can be built up from
logical code blocks, and it results in a pretty powerful mechanism for querying associations.

■Tip You can also combine association criteria as shown in Listing 10-13 with regular criteria on the
class itself.

Querying with Projections

Projections allow the results of criteria queries to be customized in some way. For example,
you may want to count only the number of results as opposed to retrieving each one. In other
words, they are equivalent to SQL functions such as count, distinct, and sum.

C H A P T E R 1 0 ■ G O R M 261

With criteria queries, you can specify a projections method call that takes a closure and
provides support for these types of queries. Instead of criteria, however, the method calls
within it map to another Hibernate class named org.hibernate.criterion.Projections.

Let’s adapt the example in Listing 10-14 by adding a projection that results in counting the
distinct Album titles in the Alternative genre.

Listing 10-14. Querying with Projections

def criteria = Album.createCriteria()
def count = criteria.get {
 projections {
 countDistinct('name')
 }
 songs {
 eq('genre', 'Alternative')
 }
}

Query by Example
An alternative to criteria queries is to pass an instance of the class you’re looking for to the find
or findAll method. This is an interesting option when used in conjunction with Groovy’s addi-
tional implicit constructor for JavaBeans, as shown in Listing 10-15.

Listing 10-15. Query by Example

def album = Album.find(new Album(title:'Odelay'))

As you can see from Listing 10-15, the find method uses the properties set on the passed
Album instance to formulate a query. Querying by example is a little limiting, because you don’t
have access to some of the more advanced expressions such as Like, Between, and GreaterThan
when passing in the example. It is, however, another useful addition to your toolbox.

HQL and SQL
Another way to perform queries is via the Hibernate Query Language (HQL), which is a flexible
object-oriented alternative to SQL. A full discussion of HQL is beyond the scope of this book;
however, the Hibernate documentation does cover it splendidly at http://www.hibernate.org/
hib_docs/reference/en/html/queryhql.html. We will look at some basic examples of how
GORM supports HQL via more built-in methods.

Those who know SQL should not find it hard to adapt to HQL, because the syntactic
differences are minimal. GORM provides three methods for working with HQL queries: find,
findAll, and executeQuery. Each method, when passed a string, will assume it’s an HQL query.
The example in Listing 10-16 presents the most basic case combined with findAll.

262 C H A P T E R 1 0 ■ G O R M

Listing 10-16. HQL via the findAll Method

// query for all albums
def allAlbums = Album.findAll('from com.g2one.gtunes.Album')

In addition, JDBC-style IN parameters (queries with question mark [?] placeholders) are
supported by passing a list as the second argument. Thanks to Groovy’s concise syntax for
expressing lists, the result is very readable, as presented in Listing 10-17.

Listing 10-17. HQL with Positional Parameters

// query for an Album by title
def album = Album.find(
 'from Album as a where a.title = ?',
 ['Odelay'])

If positional parameters aren’t your preferred option, you can also use named parameters
using the syntax shown in Listing 10-18.

Listing 10-18. HQL with Named Parameters

// query for an Album by title
def album = Album.find(
 'from Album as a where a.title = :theTitle',
 [theTitle:'Odelay'])

Notice how you use the colon character directly before the named parameter :theTitle.
Then instead of passing a list as the final argument to the find method, you pass a map where
the keys in the map match the named parameters in the query.

The methods find and findAll assume the query is a query specific to the Album class
and will validate that this is so. It is possible, however, to execute other HQL queries via the
executeQuery method, as shown in Listing 10-19.

Listing 10-19. HQL via executeQuery

// get all the songs
def songs = Album.executeQuery('select elements(b.songs) from Album as a')

Clearly, there is a lot to learn about HQL, since it is possible to perform more advanced
queries using joins, aggregate functions, and subqueries. Luckily, the documentation on the
Hibernate web site is an excellent overview of what is possible and can help you on your way.

Pagination
Whichever way you query, a typically useful thing to be able to do is paginate through a set of
results. You’ve already learned that the list() method supports arguments such as max and
offset that allow you to perform pagination. For example, to obtain the first ten results, you
can use the following:

def results = Album.list(max:10)

C H A P T E R 1 0 ■ G O R M 263

To obtain the following ten, you can use the offset argument:

def results = Album.list(max:10, offset:10)

While we’re on the topic of querying, you’ll be happy to know that the same arguments can
be used to paginate queries. For example, when using dynamic finders, you can pass a map as
the last argument, which specifies the max and offset arguments:

def results = Album.findAllByGenre("Alternative", [max:10, offset:20])

In fact, you can use any parameter covered in the previous “Listing, Sorting, and Count-
ing” section, such as sort and order:

def results = Album.findAllByGenre("Alternative", [sort:'dateCreated',
 order:'desc'])

In the view, you can take advantage of the <g:paginate> tag that renders “Previous” and
“Next” links as well as linked numbers to jump to a specific set of results à la Google. In its sim-
plest form, the <g:paginate> tag requires only the total number of records:

<g:paginate total="${Album.count()}" />

This example assumes you want to paginate the current controller action. If this is not
the case, you can customize the controller that is actually performing the pagination using the
same attributes accepted by the <g:link> tag such as controller and action:

<g:paginate controller="album" action="list" total="${Album.count()}" />

You can change the default “Previous” and “Next” links using the prev and next attributes,
respectively:

<g:paginate prev="Back" next="Forward" total="${Album.count()}" />

If internationalization (i18n) is a requirement, you can use the <g:message> tag, called as a
method, to pull the text to appear from message bundles:

<g:paginate prev="${message(code:'back.button.text')}"
 next="${message(code:'next.button.text')}"
 total="${Album.count()}" />

■Tip If you’re interested in the mechanics of i18n support in Grails, take a look at Chapter 7, which covers
the details of message bundles and switching locales.

Configuring GORM
GORM has a number of attributes that you may want to configure. Pretty much all the options
available in Hibernate are also available in GORM. One of the most fundamental things you’re
likely to want to achieve is to enable some form of SQL logging so that you can debug perfor-
mance issues and optimize queries.

264 C H A P T E R 1 0 ■ G O R M

SQL Logging
If you’re purely interested in monitoring the amount of SQL traffic hitting the database, then a
good option to use is the logSql setting in the grails-app/conf/DataSource.groovy file:

dataSource {
 ...
 logSql = true
}

With this enabled, every SQL statement issued by Hibernate will be printed to the console.
The disadvantage of the logSql setting is that you get to see only the prepared statements
printed to the console and not the actual values that are being inserted. If you need to see the
values, then set up a special log4j logger in grails-app/conf/Config.groovy as follows:

log4j = {
 ...
 logger {
 trace "org.hibernate.SQL",
 "org.hibernate.type"
 }
}

Specifying a Custom Dialect
Hibernate has, over the years, been heavily optimized for each individual database that it
supports. To support different database types, Hibernate models the concept of a dialect. For
each database it supports, there is a dialect class that knows how to communicate with that
database.

There are even different dialects for different database versions. For example, for Oracle,
there are three dialect classes: Oracle8iDialect, Oracle9iDialect, and Oracle10gDialect.
Normally, the dialect to use is automatically detected from the database JDBC metadata.
However, certain database drivers do not support JDBC metadata, in which case you may
have to specify the dialect explicitly. To do so, you can use the dialect setting of the grails-
app/conf/DataSource.groovy file. As an example, if you use the InnoDB storage engine for
MySQL, you’ll want to use the MySQL5InnoDBDialect class, as shown in Listing 10-20.

Listing 10-20. Customizing the Hibernate Dialect

dataSource {
 ...
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
}

C H A P T E R 1 0 ■ G O R M 265

Other Hibernate Properties
The logSql and dialect settings of the DataSource.groovy file demonstrated in the previous
two sections are actually just shortcuts for the hibernate.show_sql and hibernate.dialect
properties of the Hibernate SessionFactory. If you’re more comfortable using Hibernate’s con-
figuration model, then you can do so within a hibernate block in DataSource.groovy. In fact,
you’ll note that the Hibernate second-level cache (discussed in the “Caching” section later in
the chapter) is already preconfigured in this manner, as shown in Listing 10-21.

Listing 10-21. Regular Hibernate Configuration

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='com.opensymphony.oscache.hibernate.OSCacheProvider'
}

You can configure all manner of things if you’re not satisfied with the defaults set up by
Grails. For example, to change your database’s default transaction isolation level, you could
use the hibernate.connection.isolation property:

hibernate {
 hibernate.connection.isolation=4
}

In this example, we’ve changed the isolation level to Connection.
TRANSACTION_REPEATABLE_READ. Refer to the java.sql.Connection class for the other
 isolation levels.

■Tip To find out all the other configuration options available, take a look at the Hibernate refer-
ence material on the subject at http://www.hibernate.org/hib_docs/reference/en/html/
session-configuration.html.

The Semantics of GORM
As you have discovered so far, using GORM is pretty easy. It’s so easy, in fact, that you may
be lulled into a false sense of security thinking that you never have to look at a database again.
However, when working with any ORM tool, it is absolutely critical to understand how and
what the ORM tool is doing.

■Tip Since GORM is built on Hibernate, it may well be worth investing in a book specifically targeting Hiber-
nate; however, we’ll do our best to cover the key aspects here.

266 C H A P T E R 1 0 ■ G O R M

If you start using an ORM tool without understanding its semantics, you will almost cer-
tainly run into issues with the performance and behavior of your application. ORM tools are
often referred to as an example of a leaky abstraction (see http://www.joelonsoftware.com/
articles/LeakyAbstractions.html) because they attempt to isolate you from the complexities
of the underlying database. Unfortunately, to follow the analogy, the abstraction leaks quite
frequently if you’re not aware of features such as lazy and eager fetching, locking strategies,
and caching.

This chapter will provide some clarity on these quirks and ensure that you don’t use
GORM with the expectation that it will solve world hunger. GORM is often compared, under-
standably, to ActiveRecord in Rails. Unfortunately, users with Rails experience who adopt
Grails are in for a few surprises because the tools are really quite different. One of the primary
differences is that GORM has the concept of a persistence context, or session.

The Hibernate Session
Hibernate, like the Java Persistence API, models the concept of a persistence session using the
org.hibernate.Session class. The Session class is essentially a container that holds references
to all known instances of persistent classes—domain classes in Grails. In the Hibernate view
of the world, you think in terms of objects and delegate responsibility to Hibernate to ensure
that the state of the objects is synchronized to the database.

The synchronization process is triggered by calling the flush() method on the Session
object. At this point, you may be wondering how all of this relates to Grails, given that you saw
no mention of a Session object in Chapter 4. Essentially, GORM manipulates the Session
object transparently on your behalf.

It is quite possible to build an entire Grails application without ever interacting directly
with the Hibernate Session object. However, for developers who are not used to the session
model, there may be a few surprises along the way. As an example, consider the code in
Listing 10-22.

Listing 10-22. Multiple Reads Return the Same Object

def album1 = Album.get(1)
def album2 = Album.get(1)

assertFalse album1.is(album2)

The code in Listing 10-1 shows a little gotcha for developers not used to the session model.
The first call to the get method retrieves an instance of the Album class by executing a SQL
SELECT statement under the covers—no surprises there. However, the second call to the get
method doesn’t execute any SQL at all, and in fact, the assertion on the last lines fails.

■Note In the example in Listing 10-22, the final assertFalse statement uses Groovy’s is method
because == in Groovy is equivalent to calling the equals(Object) method in Java.

C H A P T E R 1 0 ■ G O R M 267

In other words, the Session object appears to act like a cache, and in fact it is one. The
Session object is Hibernate’s first-level cache. Another area where this is apparent is when
saving an object. For example, consider the code in Listing 10-23.

Listing 10-23. Saving a Domain Class in Grails

def album = new Album(..)
album.save()

Now, assuming the Album instance validates, you may think from the code in Listing 10-2
that GORM will execute a SQL INSERT statement when the save() method is called. However,
this is not necessarily the case, and in fact it depends greatly on the underlying database.
GORM by default uses Hibernate’s native identity generation strategy, which attempts to
select the most appropriate way to generate the id of an object. For example, in Oracle,
Hibernate will opt to use a sequence generator to supply the identifier, while in MySQL the
identity strategy will be used. The identity generation strategy relies on the database to
supply the identity.

Since an identifier must be assigned by the time the save() method completes, if a
sequence is used, no INSERT is needed because Hibernate can simply increment the sequence
in memory. The actual INSERT can then occur later when the Session is flushed. However, in
the case of the identity strategy, an INSERT is needed since the database needs to generate the
identifier. Nevertheless, the example serves to demonstrate that it is the Session that is respon-
sible for synchronizing the object’s state to the database, not the object itself.

Essentially, Hibernate implements the strategy known as transactional write-behind. Any
changes you make to persistent objects are not necessarily persisted when you make them or
even when you call the save() method. The advantage of this approach is that Hibernate can
heavily optimize and batch up the SQL to be executed, hence minimizing network traffic. In
addition, the time for which database locks (discussed in more detail in the “Locking Strate-
gies” section) are held is greatly reduced by this model.

Session Management and Flushing
You may be worried at this point that you’re losing some kind of control by allowing Hibernate
to take responsibility for persisting objects on your behalf. Fortunately, GORM provides you
with the ability to control session flushing implicitly by passing in a flush argument to the
save() or delete() method, as shown in Listing 10-24.

Listing 10-24. Manually Flushing the Session

def album = new Album(..)
album.save(flush:true)

In contrast to the example in Listing 10-23, the code in Listing 10-24 will persist the object
but also call flush() on the underlying Session object. However, it is important to note that
since the Session deals with all persistent instances, other changes may be flushed in addition
to the object that is saved. Listing 10-25 illustrates an example of this behavior.

268 C H A P T E R 1 0 ■ G O R M

Listing 10-25. The Effects of Flushing

def album1 = Album.get(1)
album1.title = "The Changed Title"
album1.save()
def album2 = new Album(..)
album2.save(flush:true)

The example in Listing 10-25 demonstrates the impact of passing the flush argument to
the second save() method. You may expect that a SQL UPDATE would be executed when save()
is called on album1, and then an INSERT would occur when save() is called on album2. However,
the actual behavior is that both the UPDATE and the INSERT occur on the call to save() on album2,
since the flush:true argument passed forces the underlying Session object to synchronize
changes with the database.

You may be wondering at this point how the code in the listings you’ve seen so far can
possibly use the same Session instance and where this Session came from in the first place.
Basically, when a request comes into a Grails application, directly before a controller action
executes, Grails will transparently bind a new Hibernate Session to the current thread. The
Session is then looked up by GORM’s dynamic methods like get in Listing 10-8. When a con-
troller action finishes executing, if no exceptions are thrown, the Session is flushed, which
synchronizes the state of the Session with the database by executing any necessary SQL. These
changes are then committed to the database.

However, that is not the end of the story. The Session is not closed but instead placed in
read-only mode prior to view rendering and remains open until view rendering completes. The
reason for this is that if the session were closed, any persistent instances contained within it
would become detached. The result is that if there were any noninitialized associations, the
infamous org.hibernate.LazyInitializationException would occur. Ouch! Of course, we’ll be
saying more about LazyInitializationException and ways to avoid the exception, including
in-depth coverage of detached objects later in the chapter.

To elaborate, the reason for placing the Session into read-only mode during view render-
ing is to avoid any unnecessary flushing of the Session during the view-rendering process.
Your views really shouldn’t be modifying database state after all! So, that is how the standard
Session life cycle works in Grails. However, there is an exception. In the previous chapter, you
explored Web Flow, which allows you to construct rich conversations that model multistep
processes. Unlike regular requests, the Session is not scoped to the request but instead to the
entire flow.

When the flow is started, a new Session is opened and bound to flow scope. Then when-
ever the flow resumes execution, the same session is retrieved. In this case, all the GORM
methods work with the session bound into flow scope. Finally, when the flow terminates at
an end state, the Session is flushed, and any changes are committed to the database.

Obtaining the Session
Now, as mentioned previously, the Session is basically a cache of persistent instances. Like any
cache, the more objects it has within it, the more memory it’s going to consume. A common
mistake when using GORM is to query for a large number of objects without periodically clear-
ing the Session. If you do so, your Session will get bigger and bigger, and eventually you may
either cause your application’s performance to suffer or, worse, run out of memory.

C H A P T E R 1 0 ■ G O R M 269

In these kinds of scenarios, it is wise to manage the state of your Session manually. Before
you can do so, however, you need a reference to the Session object itself. You can achieve this
in two ways. The first involves the use of dependency injection to get hold of a reference to the
Hibernate SessionFactory object.

The SessionFactory has a method called currentSession() that you can use to obtain the
Session bound to the current thread. To use dependency injection, simply declare a local field
called sessionFactory in a controller, tag library, or service, as shown in Listing 10-26.

Listing 10-26. Using Dependency Injection to Obtain the Hibernate Session

def sessionFactory
...
def index = {
 def session = sessionFactory.currentSession()
}

As an alternative, you could use the withSession method that is available on any domain
class. The withSession method accepts a closure. The first argument to the closure is the
Session object; hence, you can code as in Listing 10-27.

Listing 10-27. Using the withSession Method

def index = {
 Album.withSession { session ->
 ...
 }
}

Let’s return to the problem at hand. To avoid memory issues when using GORM with a
large amount of data (note this applies to raw Hibernate too), you need to call the clear()
method on the Session object periodically so that the contents of the Session are cleared. The
result is that the instances within the Session become candidates for garbage collection, which
frees up memory. Listing 10-28 shows an example that demonstrates the pattern.

Listing 10-28. Managing the Hibernate Session

1 def index = {
2 Album.withSession { session ->
3 def allAlbums = Album.list()
4 for(album in allAlbums) {
5 def songs = Song.findAllByAlbum(album)
6 // do something with the songs
7 ...
8 session.clear()
9 }
10 }
11 }

270 C H A P T E R 1 0 ■ G O R M

The example in Listing 10-28 is rather contrived, but it serves to demonstrate effective
Session management when dealing with a large number of objects. On line 2, a reference to the
Session is obtained using the withSession method:

2 Album.withSession { session ->
 ...
10 }

Then, on line 3, a query is used to get a list of all the albums in the system, which could be
big in itself, and then iterate over each one:

3 def allAlbums = Album.list()
4 for(album in allAlbums) {
 ..
9 }

Critically, on line 5, a dynamic finder queries for all the Song instances for the current Album:

5 def songs = Song.findAllByAlbum(album)

Now, each time the findAllByAlbum method is executed, more and more persistent
instances are being accumulated in the Session. Memory consumption may at some point
become an issue depending on how much data is in the system at the time. To prevent this,
the session is cleared on line 8:

8 session.clear()

Clearing the Session with the clear() method is not the only way to remove objects from
Hibernate’s grasp. If you have a single object, you can also call the discard() method. You
could even use the *. operator to discard entire collections of objects using this technique:

songs*.discard()

The advantage of this approach is that although the clear() method removes all persistent
instances from the Session, using discard() removes only the instances you no longer need. This
can help in certain circumstances because you may end up with a LazyInitializationException
because removing the objects from the Session results in them being detached (a subject we’ll
discuss in more detail in the “Detached Objects” section).

Automatic Session Flushing
Another common gotcha is that by default GORM is configured to flush the session automati-
cally when one of the following occurs:

• Whenever a query is run

• Directly after a controller action completes, if no exceptions are thrown

• Directly before a transaction is committed

This has a number of implications that you need to consider. Take, for example, the code
in Listing 10-29.

C H A P T E R 1 0 ■ G O R M 271

Listing 10-29. The Implications of Automatic Session Flushing

1 def album = Album.get(1)
2 album.title = "Change It"
3 def otherAlbums = Album.findAllWhereTitleLike("%Change%")
4
5 assert otherAlbums.contains(album)

Now, you may think that because you never called save() on the album there is no way
it could possibly have been persisted to the database, right? Wrong. As soon as you load the
album instance, it immediately becomes a “managed” object as far as Hibernate is concerned.
Since Hibernate is by default configured to flush the session when a query runs, the Session
is flushed on line 3 when the findAllWhereTitleLike method is called and the Album instance
is persisted. The Hibernate Session caches changes and pushes them to the database only at
the latest possible moment. In the case of automatic flushing, this is at the end of a transac-
tion or before a query runs that might be affected by the cached changes.

You may consider the behavior of automatic flushing to be a little odd, but if you think
about it, it depends very much on your expectations. If the object weren’t flushed to the data-
base, then the change made to it on line 2 would not be reflected in the results. That may not
be what you’re expecting either! Let’s consider another example where automatic flushing may
present a few surprises. Take a look at the code in Listing 10-30.

Listing 10-30. Another Implication of Automatic Session Flushing

def album = Album.get(1)
album.title = "Change It"

In Listing 10-16, an instance of the Album class is looked up and the title is changed, but
the save() method is never called. You may expect that since save() was never called, the Album
instance will not be persisted to the database. However, you’d be wrong again. Hibernate does
automatic dirty checking and flushes any changes to the persistent instances contained within
the Session.

This may be what you were expecting in the first place. However, one thing to consider is
that if you simply allow this to happen, then Grails’ built-in validation support, discussed in
Chapter 3, will not kick in, resulting in a potentially invalid object being saved to the database.

It is our recommendation that you should always call the save() method when persisting
objects. The save() method will call Grails’ validation mechanism and mark the object as read-
only, including any associations of the object, if a validation error occurs. If you were never
planning to save the object in the first place, then you may want to consider using the read
method instead of the get method, which returns the object in a read-only state:

def album = Album.read(1)

If all of this is too dreadful to contemplate and you prefer to have full control over how and
when the Session is flushed, then you may want to consider changing the default FlushMode
used by specifying the hibernate.flush.mode setting in DataSource.groovy:

hibernate.flush.mode="manual"

272 C H A P T E R 1 0 ■ G O R M

The possible values of the hibernate.flush.mode setting are summarized as follows:

• manual: Flush only when you say so! In other words, only flush the session when the
flush:true argument is passed to save() or delete(). The downside with a manual flush
mode is that you may receive stale data from queries, and you must always pass the
flush:true argument to the save() or delete() method.

• commit: Flush only when the transaction is committed (see the next section).

• auto: Flush when the transaction is committed and before a query is run.

Nevertheless, assuming you stick with the default auto setting, the save() method might
not, excuse the pun, save you in the case of the code from Listing 10-15. Remember in this case
the Session is automatically flushed before the query is run. This problem brings us nicely onto
the topic of transactions in GORM.

Transactions in GORM
First things first—it is important to emphasize that all communication between Hibernate and
the database runs within the context of a database transaction regardless of whether you are
explicit about the transaction demarcation boundaries. The Session itself is lazy in that it only
ever initiates a database transaction at the last possible moment.

Consider the code in Listing 10-15 again. When the code is run, a Session has already been
opened and bound to the current thread. However, a transaction is initiated only on first com-
munication with the database, which happens within the call to get on line 1.

At this point, the Session is associated with a JDBC Connection object. The autoCommit
property of the Connection object is set to false, which initiates a transaction. The Connection
will then be released only once the Session is closed. Hence, as you can see, there is never really
a circumstance where Grails operates without an active transaction, since the same Session is
shared across the entire request.

Given that there is a transaction anyway, you would think that if something went wrong,
any problems would be rolled back. However, without specific transaction boundaries and if
the Session is flushed, any changes are permanently committed to the database.

This is a particular problem if the flush is beyond your control (for instance, the result of a
query). Then those changes will be permanently persisted to the database. The result may be
the rather painful one of having your database left in an inconsistent state. To help you under-
stand, let’s look at another illustrative example, as shown in Listing 10-31.

Listing 10-31. Updates Gone Wrong

def save = {
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(flush:true)
 ...
 // something goes wrong
 throw new Exception("Oh, sugar.")
}

C H A P T E R 1 0 ■ G O R M 273

The example in Listing 10-15 shows a common problem. In the first three lines of the save
action, an instance of the Album class is obtained using the get method, the title is updated, and
the save() method is called and passes the flush argument to ensure updates are synchronized
with the database. Then later in the code, something goes wrong, and an exception is thrown.
Unfortunately, if you were expecting previous updates to the Album instance to be rolled back,
you’re out of luck. The changes have already been persisted when the Session was flushed! You
can correct this in two ways; the first is to move the logic into a transactional service. Services
are the subject of Chapter 11, so we’ll be showing the latter option, which is to use program-
matic transactions. Listing 10-32 shows the code updated to use the withTransaction method
to demarcate the transactional boundaries.

Listing 10-32. Using the withTransaction Method

def save = {
 Album.withTransaction {
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(flush:true)
 ...
 // something goes wrong
 throw new Exception("Oh, sugar.")
 }
}

Grails uses Spring’s PlatformTransactionManager abstraction layer under the covers. In
this case, if an exception is thrown, all changes made within the scope of the transaction will
be rolled back as expected. The first argument to the withTransaction method is a Spring
TransactionStatus object, which also allows you to programmatically roll back the transaction
by calling the setRollbackOnly() method, as shown in Listing 10-33.

Listing 10-33. Programmatically Rolling Back a Transaction

def save = {
 Album.withTransaction { status ->
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(flush:true)
 ...
 // something goes wrong
 if(hasSomethingGoneWrong()) {
 status.setRollbackOnly()
 }
 }
}

Note that you need only one withTransaction declaration. If you were to nest
withTransaction declarations within each other, then the same transaction would simply
be propagated from one withTransaction block to the next. The same is true of transactional

274 C H A P T E R 1 0 ■ G O R M

services. In addition, if you have a JDBC 3.0–compliant database, then you can leverage save-
points, which allow you to roll back to a particular point rather than rolling back the entire
transaction. Listing 10-34 shows an example that rolls back any changes made after the Album
instance was saved.

Listing 10-34. Using Savepoints in Grails

def save = {
 Album.withTransaction { status ->
 def album = Album.get(params.id)
 album.title = "Changed Title"
 album.save(flush:true)

 def savepoint = status.createSavepoint()
 ...
 // something goes wrong
 if(hasSomethingGoneWrong()) {
 status.rollbackToSavepoint(savepoint)
 // do something else
 ...
 }
 }
}

With transactions out of the way, let’s revisit a topic that has been touched on at various
points throughout this chapter: detached objects.

Detached Objects
The Hibernate Session is critically important to understand the nature of detached objects.
Remember, the Session keeps track of all persistent instances and acts like a cache, returning
instances that already exist in the Session rather than hitting the database again. As you can
imagine, each object goes through an implicit life cycle, a topic we’ll be looking at first.

The Persistence Life Cycle
Before an object has been saved, it is said to be transient. Transient objects are just like regular
Java objects and have no notion of persistence. Once you call the save() method, the object
is in a persistent state. Persistent objects have an assigned identifier and may have enhanced
capabilities such as the ability to lazily load associations. If the object is discarded by calling the

C H A P T E R 1 0 ■ G O R M 275

discard() method or if the Session has been cleared, it is said to be in a detached state. In other
words, each persistent object is associated with a single Session, and if the object is no longer
managed by the Session, it has been detached from the Session.

Figure 10-2 shows a state diagram describing the persistence life cycle and the various
states an object can go through. As the diagram notes, another way an object can become
detached is if the Session itself is closed. If you recall, we mentioned that a new Session is
bound for each Grails request. When the request completes, the Session is closed. Any objects
that are still around, for example, held within the HttpSession, are now in a detached state.

Figure 10-2. The persistence life cycle

So, what is the implication of being in a detached state? For one, if a detached object
that is stored in the HttpSession has any noninitialized associations, then you will get a
LazyInitializationException.

276 C H A P T E R 1 0 ■ G O R M

Reattaching Detached Objects
Given that it is probably undesirable to experience a LazyInitializationException, you can
eliminate this problem by reassociating a detached object with the Session bound to the cur-
rent thread by calling the attach() method, for example:

album.attach()

Note that if an object already exists in the Session with the same identifier, then you’ll
get an org.hibernate.NonUniqueObjectException. To get around this, you may want to check
whether the object is already attached by using the isAttached() method:

if(!album.isAttached()) {
 album.attach()
}

Since we’re on the subject of equality and detached objects, it’s important to bring up the
notion of object equality here. If you decide you want to use detached objects extensively, then
it is almost certain that you will need to consider implementing equals and hashCode for all of
your domain classes that are detached. Why? Well, if you consider the code in Listing 10-35,
you’ll soon see why.

Listing 10-35. Object Equality and Hibernate

def album1 = Album.get(1)
album.discard()

def album2 = Album.get(1)

assert album1 == album2 // This assertion will fail

The default implementation of equals and hashCode in Java uses object equality to com-
pare instances. The problem is that when an instance becomes detached, Hibernate loses all
knowledge of it. As the code in Listing 10-35 demonstrates, loading two instances with the
same identifier once one has become detached results in you having two different instances.
This can cause problems when placing these objects into collections. Remember, a Set uses
hashCode to work out whether an object is a duplicate, but the two Album instances will return
two different hash codes even though they share the same database identifier!

To get around this problem, you could use the database identifier, but this is not recom-
mended, because a transient object that then becomes persistent will return different hash
codes over time. This breaks the contract defined by the hashCode method, which states that
the hashCode implementation must return the same integer for the lifetime of the object. The
recommended approach is to use the business key, which is typically some logical property or
set of properties that is unique to and required by each instance. For example, with the Album
class, it may be the Artist name and title. Listing 10-36 shows an example implementation.

C H A P T E R 1 0 ■ G O R M 277

Listing 10-36. Implementing equals and hashCode

class Album {
 ...
 boolean equals(o) {
 if(this.is(o)) return true
 if(!(o instanceof Album)) return false
 return this.title = o.title && this.artist?.name = o.artist?.name
 }
 int hashCode() {
 this.title.hashCode() + this.artist?.name?.hashCode() ?: 0
 }
}

An important thing to remember is that you need to implement equals and hashCode only
if you are:

• Using detached instances extensively

• Placing the detached instances into data structures, like the Set and Map collection types,
that use hashing algorithms to establish equality

The subject of equality brings us nicely onto another potential stumbling block. Say you
have a detached Album instance held somewhere like in the HttpSession and you also have
another Album instance that is logically equal (they share the same identifier) to the instance in
the HttpSession. What do you do? Well, you could just discard the instance in the HttpSession:

def index = {
 def album = session.album
 if(album.isAttached()) {
 album = Album.get(album.id)
 session.album = album
 }
}

However, what if the detached album in the HttpSession has changes? What if it represents
the most up-to-date copy and not the one already loaded by Hibernate? In this case, you need
to consider merging.

Merging Changes
To merge the state of one, potentially detached, object into another, you need to use the static
merge method. The merge method accepts an instance, loads a persistent instance of the same
logical object if it doesn’t already exist in the Session, and then merges the state of the passed
instance into the loaded persistent one. Once this is done, the merge method then returns a
new instance containing the merged state. Listing 10-37 presents an example of using the
merge method.

278 C H A P T E R 1 0 ■ G O R M

Listing 10-37. Using the merge Method
def index = {
 def album = session.album
 album = Album.merge(album)
 render album.title
}

Performance Tuning GORM
The previous section on the semantics of GORM showed how the underlying Hibernate engine
optimizes database access using a cache (the Session). There are, however, various ways to
optimize the performance of your queries. In the next few sections, we’ll be covering the differ-
ent ways to tune GORM, allowing you to get the best out of the technology. You may want to
enable SQL logging by setting logSql to true in DataSource.groovy, as explained in the previous
section on configuring GORM.

Eager vs. Lazy Associations
Associations in GORM are lazy by default. What does this mean? Well, say you looked up a load
of Album instances using the static list() method:

def albums = Album.list()

To obtain all the Album instances, underneath the surface Hibernate will execute a single
SQL SELECT statement to obtain the underlying rows. As you already know, each Album has an
Artist that is accessible via the artist association. Now say you need to iterate over each song
and print the Artist name, as shown in Listing 10-38.

Listing 10-38. Iterating Over Lazy Associations

def albums = Album.list()
for(album in albums) {
 println album.artist.name
}

The example in Listing 10-38 demonstrates what is commonly known as the N+1 problem.
Since the artist association is lazy, Hibernate will execute another SQL SELECT statement
(N statements) for each associated artist to add to the single statement to retrieve the original
list of albums. Clearly, if the result set returned from the Album association is large, you have a
big problem. Each SQL statement executed results in interprocess communication, which
drags down the performance of your application. Listing 10-39 shows the typical output you
would get from the Hibernate SQL logging, shortened for brevity.

C H A P T E R 1 0 ■ G O R M 279

Listing 10-39. Hibernate SQL Logging Output Using Lazy Associations

Hibernate:
 select
 this_.id as id0_0_,
 this_.version as version0_0_,
 this_.artist_id as artist3_0_0_,
 ...
 from
 album this_
Hibernate:
 select
 artist0_.id as id8_0_,
 ...
 from
 artist artist0_
 where
 artist0_.id=?
Hibernate:
 select
 artist0_.id as id8_0_,
 ...
 from
 artist artist0_
 where
 artist0_.id=?
...

A knee-jerk reaction to this problem would be to make every association eager. An eager
association uses a SQL JOIN so that all Artist associations are populated whenever you query
for Album instances. Listing 10-40 shows you can use the mapping property to configure an asso-
ciation as eager by default.

Listing 10-40. Configuring an Eager Association

class Album {
 ...
 static mapping = {
 artist fetch:'join'
 }
}

280 C H A P T E R 1 0 ■ G O R M

However, this may not be optimal either, because you may well run into a situation where
you pull your entire database into memory! Lazy associations are definitely the most sensible
default here. If you’re merely after the identifier of each associated artist, then it is possible to
retrieve the identifier without needing to do an additional SELECT. All you need to do is refer to
the association name plus the suffix Id:

def albums = Album.list()
for(album in albums) {
 println album.artistId // get the artist id
}

However, as the example in Listing 10-38 demonstrates, there are certain examples where
a join query is desirable. You could modify the code as shown in Listing 10-41 to use the fetch
argument.

Listing 10-41. Using the fetch Argument to Obtain Results Eagerly

def albums = Album.list(fetch:[artist:'join'])
for(album in albums) {
 println album.artist.name
}

If you run the code in Listing 10-41, instead of N+1 SELECT statements, you get a single
SELECT that uses a SQL INNER JOIN to obtain the data for all artists too. Listing 10-42 shows
the output from the Hibernate SQL logging for this query.

Listing 10-42. Hibernate SQL Logging Output Using Eager Association

select
 this_.id as id0_1_,
 this_.version as version0_1_,
 this_.artist_id as artist3_0_1_,
 this_.date_created as date4_0_1_,
 this_.genre as genre0_1_,
 this_.last_updated as last6_0_1_,
 this_.price as price0_1_,
 this_.title as title0_1_,
 this_.year as year0_1_,
 artist2_.id as id8_0_,
 artist2_.version as version8_0_,
 artist2_.date_created as date3_8_0_,
 artist2_.last_updated as last4_8_0_,
 artist2_.name as name8_0_
from
 album this_
inner join
 artist artist2_
 on this_.artist_id=artist2_.id

C H A P T E R 1 0 ■ G O R M 281

Of course, the static list() method is not the only case where you require a join query to
optimize performance. Luckily, dynamic finders, criteria, and HQL can all be used to perform
a join. Using a dynamic finder, you can use the fetch parameter by passing a map as the last
argument:

def albums = Album.findAllByGenre("Alternative", [fetch:[artist:'join']])

Using criteria queries you can use the join method:

def albums = Album.withCriteria {
 ...
 join 'artist'
}

And, finally, with HQL you can use a similar syntax to SQL by specifying the inner join in
the query:

def albums = Album.findAll("from Album as a inner join a.artist as artist")

Batch Fetching
As you discovered in the previous section, using join queries can solve the N+1 problem by
reducing multiple SQL SELECT statements to a single SELECT statement that uses a SQL JOIN.
However, join queries too can be expensive, depending on the number of joins and the amount
of data being pulled from the database.

As an alternative, you could use batch fetching, which serves as an optimization of the lazy
fetching strategy. With batch fetching, instead of pulling in a single result, Hibernate will use
a SELECT statement that pulls in a configured number of results. To take advantage of batch
fetching, you need to set the batchSize at the class or association level.

As an example, say you had a long Album with 23 songs. Hibernate would execute a single
SELECT to get the Album and then 23 extra SELECT statements for each Song. However, if you con-
figured a batchSize of 10 for the Song class, Hibernate would perform only 3 queries in batches
of 10, 10, and 3. Listing 10-43 shows how to configure the batchSize using the mapping block of
the Song class.

Listing 10-43. Configuring the batchSize at the Class Level

class Song {
 ...
 static mapping = {
 batchSize 10
 }
}

Alternatively, you can also configure the batchSize on the association. For example, say
you loaded 15 Album instances. Hibernate will execute a SELECT every time the songs association
of each Album is accessed, resulting in 15 SELECT statements. If you configured a batchSize of 5
on the songs association, you would only get 3 queries. Listing 10-44 shows how to configure
the batchSize of the songs association.

282 C H A P T E R 1 0 ■ G O R M

Listing 10-44. Configuring the batchSize of an Association

class Album {
 ...
 static mapping = {
 songs batchSize:10
 }
}

As you can see from this discussion on eager vs. lazy fetching, a large part of optimizing an
application’s performance lies in reducing the number of calls to the database. Eager fetching
is one way to achieve that, but you’re still making a trip to the database even if it’s only one.

An even better solution is to eliminate the majority of calls to the database by caching the
results. In the next section, we’ll be looking at different caching techniques you can take advan-
tage of in GORM.

Caching
In the previous “The Semantics of GORM” section, you discovered that the underlying Hiber-
nate engine models the concept of a Session. The Session is also known as the first-level cache,
because it stores the loaded persistent entities and prevents repeated access to the database for
the same object. However, Hibernate also has a number of other caches including the second-
level cache and the query cache. In the next section, we’ll explain what the second-level cache
is and show how it can be used to reduce the chattiness between your application and the
database.

The Second-Level Cache

As discussed, as soon as a Hibernate Session is obtained by GORM, you already have an active
cache: the first-level cache. Although the first-level cache stores actual persistent instances for
the scope of the Session, the second-level cache exists for the whole time that the SessionFac-
tory exists. Remember, the SessionFactory is the object that constructs each Session.

In other words, although a Session is typically scoped for each request, the second-level
cache is application scoped. Additionally, the second-level cache stores only the property values
and/or foreign keys rather than the persistent instances themselves. As an example, Listing 10-45
shows the conceptual representations of the Album class in the second-level cache.

Listing 10-45. How the Second-Level Cache Stores Data

9 -> ["Odelay",1994, "Alternative", 9.99, [34,35,36], 4]
5 -> ["Aha Shake Heartbreak",2004, "Rock", 7.99, [22,23,24], 8]

As you can see, the second-level cache stores the data using a map containing multidi-
mensional arrays that represent the data. The reason for doing this is that Hibernate doesn’t
have to require your classes to implement Serializable or some persistence interface. By stor-
ing only the identifiers of associations, it eliminates the chance of the associations becoming
stale. The previous explanation is a bit of an oversimplification; however, you don’t need to
concern yourself too much with the detail. Your main job is to specify a cache provider.

C H A P T E R 1 0 ■ G O R M 283

By default, Grails comes preconfigured with OSCache as the cache provider. However,
Grails also ships with Ehcache, which is recommended for production environments. You
can change the cache configuration in DataSource.groovy by modifying the settings shown
in Listing 10-46.

Listing 10-46. Specifying a Cache Provider

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='com.opensymphony.oscache.hibernate.OSCacheProvider'
}

You can even configure a distributed cache such as Oracle Coherence or Terracotta, but be
careful if your application is dependent on data not being stale. Remember, cached results
don’t necessarily reflect the current state of the data in the database.

Once you have a cache provider configured, you’re ready to go. However, by default all
persistent classes have no caching enabled. You have to be very explicit about specifying what
data you want cached and what the cache policy is for that data.

There are essentially four cache policies available depending on your needs:

• read-only: If your application never needs to modify data after it is created, then use this
policy. It is also an effective way to enforce read-only semantics for your objects because
Hibernate will throw an exception if you try to modify an instance in a read-only cache.
Additionally, this policy is safe even when used in a distributed cache because there is no
chance of stale data.

• nonstrict-read-write: If your application rarely modifies data and transactional
updates aren’t an issue, then a nonstrict-read-write cache may be appropriate. This
strategy doesn’t guarantee that two transactions won’t simultaneously modify a persis-
tent instance. It is mainly recommended for usage in scenarios with frequent reads and
only occasional updates.

• read-write: If your application requires users to frequently modify data, then you may
want to use a read-write cache. Whenever an object is updated, Hibernate will automat-
ically evict the cached data from the second-level cache. However, there is still a chance
of phantom reads (stale data) with this policy, and if transactional behavior is a require-
ment, you should not use a transactional cache.

• transactional: A transactional cache provides fully transactional behavior with no
chance of dirty reads. However, you need to make sure you supply a cache provider that
supports this feature such as JBoss TreeCache.

So, how do you use these different cache levels in a Grails application? Essentially, you
need to mark each class and/or association you want to cache using the cache method of the
mapping block. For example, Listing 10-47 shows how to configure the default read-write cache
for the Album class and a read-only cache for the songs association.

284 C H A P T E R 1 0 ■ G O R M

Listing 10-47. Specifying a Cache Policy

class Album {
 ...
 static mapping {
 cache true
 songs cache:'read-only'
 }
}

Now, whenever you query for results, before loading them from the database Hibernate
will check whether the record is already present in the second-level cache and, if it is, load it
from there. Now let’s look at another one of Hibernate’s caches: the query cache.

Query Caching

Hibernate, and hence GORM, supports the ability to cache the results of a query. As you can
imagine, this is useful only if you have a frequently executed query that uses the same param-
eters each time. The query cache can be enabled and disabled using the hibernate.cache.
use_query_cache setting in DataSource.groovy, as shown in Listing 10-46.

■Note The query cache works together with the second-level cache, so unless you specify a caching policy
as shown in the previous section, the results of a cached query will not be cached.

By default, not all queries are cached. Like caching of instances, you have to specify
explicitly that a query needs caching. To do so, in the list() method you could use the cache
argument:

def albums = Album.list(cache:true)

The same technique can be used with dynamic finders using a map passed as the last
argument:

def albums = Album.findAllByGenre("Alternative", [cache:true])

You can also cache criteria queries using the cache method:

def albums = Album.withCriteria {
 ...
 cache true
}

That’s it for caching; in the next section, we’ll cover the impacts of inheritance in ORM
mapping.

C H A P T E R 1 0 ■ G O R M 285

Inheritance Strategies
As demonstrated in Chapter 3, you can implement inheritance using two different strategies
called table-per-hierarchy or table-per-subclass. With a table-per-hierarchy mapping, one table
is shared between the parent and all child classes, while table-per-subclass uses a different
table for each subsequent subclass.

If you were going to identify one area of ORM technology that really demonstrates the
object vs. relational mismatch, it would be inheritance mapping. If you go for table-per-
hierarchy, then you’re forced to have not-null constraints on all child columns because
they share the same table. The alternative solution, table-per-subclass, could be seen as
better since you avoid the need to specify nullable columns as each subclass resides in its
own table.

The main disadvantage of table-per-subclass is that in a deep inheritance hierarchy you
may end up with an excessive number of JOIN queries to obtain the results from all the parents
of a given child. As you can imagine, this can lead to a performance problem if not used with
caution; that’s why we’re covering the topic here.

Our advice is to keep things simple and try to avoid modeling domains with more than
three levels of inheritance when using table-per-subclass. Alternatively, if you’re happy stick-
ing with table-per-hierarchy, then you’re even better off because no JOIN queries at all are
required. And with that, we end our coverage of performance tuning GORM. In the next sec-
tion, we’ll be covering locking strategies and concurrency.

Locking Strategies
Given that Grails executes within the context of a multithreaded servlet container, concurrency
is an issue that you need to consider whenever persisting domain instances. By default, GORM
uses optimistic locking with versioning. What this means is that the Hibernate engine does not
hold any locks on database rows by performing a SELECT FOR...UPDATE. Instead, Hibernate ver-
sions every domain instance.

You may already have noticed that every table generated by GORM contains a version
column. Whenever a domain instance is saved, the version number contained within the
version column is incremented. Just before any update to a persistent instance, Hibernate
will issue a SQL SELECT to check the current version. If the version number in the table
doesn’t match the version number of the instance being saved, then an org.hibernate.
StaleObjectStateException is thrown, which is wrapped in a Spring org.springframework.
dao.OptimisticLockingFailureException and rethrown.

The implication is that if your application is processing updates with a high level of con-
currency, you may need to deal with the case when you get a conflicting version. The upside is
that since table rows are never locked, performance is much better. So, how do you go about
gracefully handling an OptimisticLockingFailureException? Well, this is a domain-specific
question. You could, for example, use the merge method to merge the changes back into the
database. Alternatively, you could return the error to the user and ask him to perform a manual
merge of the changes. It really does depend on the application. Nevertheless, Listing 10-48
shows how to handle an OptimisticLockingFailureException using the merge technique.

286 C H A P T E R 1 0 ■ G O R M

Listing 10-48. Dealing with Optimistic Locking Exceptions

def update = {
 def album = Album.get(params.id)
 album.properties = params
 try {
 if(album.save(flush:true)) {
 // success
 ...
 }
 else {
 // validation error
 ...
 }
 }
 catch(OptimisticLockingFailureException e) {
 album = Album.merge(album)
 ...
 }
}

If you prefer not to use optimistic locking, either because you’re mapping to a legacy data-
base or because you just don’t like it, then you can disable optimistic locking using the version
method inside the mapping closure of a domain class:

static mapping = {
 version false
}

If you’re not expecting a heavy load on your site, then an alternative may be to use pessimis-
tic locking. Unlike optimistic locking, pessimistic locking will perform SELECT FOR...UPDATE on
the underlying table row, which will block any other threads’ access to the same row until the
update is committed. As you can imagine, this will have an impact on the performance of your
application. To use pessimistic locking, you need to call the static lock() method, passing the
identifier of the instance to obtain a lock. Listing 10-49 shows an example of using pessimistic
locking with the lock method.

Listing 10-49. Using the lock Method to Obtain a Pessimistic Lock

def update = {
 def album = Album.lock(params.id)
 ...
}

C H A P T E R 1 0 ■ G O R M 287

If you have a reference to an existing persistent instance, then you can call the lock()
instance method, which upgrades to a pessimistic lock. Listing 10-50 shows how to use the
lock instance method.

Listing 10-50. Using the lock Instance Method to Upgrade to a Pessimistic Lock

def update = {
 def album = Album.get(params.id)
 album.lock() // lock the instance
 ...
}

Note that you need to be careful when using the lock instance method because you still get
an OptimisticLockingFailureException if another thread has updated the row in the time it
takes to get the instance and call lock() on it! With locks out of the way, let’s move on to looking
at GORM’s support for events.

Events Auto Time Stamping
GORM has a number of built-in hooks you can take advantage of to hook into persistence
events. Each event is defined as a closure property in the domain class itself. The events avail-
able are as follows:

• onLoad/beforeLoad: Fired when an object is loaded from the database

• beforeInsert: Fired before an object is initially persisted to the database

• beforeUpdate: Fired before an object is updated in the database

• beforeDelete: Fired before an object is deleted from the database

• afterInsert: Fired after an object has been persisted to the database

• afterUpdate: Fired after an object has been updated in the database

• afterDelete: Fired after an object has been deleted from the database

These events are useful for performing tasks such as audit logging and tracking.

■Tip If you’re interested in a more complete solution for audit logging, you may want to check out the Audit
Logging plugin for Grails at http://www.grails.org/Grails+Audit+Logging+Plugin.

288 C H A P T E R 1 0 ■ G O R M

For example, you could have another domain class that models an AuditLogEvent that
gets persisted every time an instance gets accessed or saved. Listing 10-51 shows this con-
cept in action.

Listing 10-51. Using GORM Events

class Album {
 ...
 transient onLoad = {
 new AuditLogEvent(type:"read", data:title).save()
 }
 transient beforeSave = {
 new AuditLogEvent(type:"save", data:title).save()
 }
}

GORM also supports automatic time stamps. Essentially, if you provide a property called
dateCreated and/or one called lastUpdate, GORM will automatically populate the values for
these every time an instance is saved or updated. In fact, you’ve already been using this feature
since the Album class has lastUpdated and dateCreated properties. However, if you prefer to
manage these properties manually, you can disable automatic time stamping using the auto-
Timestamp method of the mapping block, as shown in Listing 10-52.

Listing 10-52. Disable Auto Time Stamping

class Album {
 ...
 static mapping = {
 autoTimestamp false
 }
}

Summary
And with that, you’ve reached the end of this tour of GORM. As you’ve discovered, thanks
in large part to Hibernate, GORM is a fully featured dynamic ORM tool that blurs the lines
between objects and the database. From dynamic finders to criteria, there is a plethora of
options for your querying needs. However, it’s not all clever tricks; GORM provides solutions
to the harder problems such as eager fetching and optimistic locking.

Possibly the most important aspect of this chapter is the knowledge you have gained on
the semantics of GORM. By understanding the ORM tool you are using, you’ll find there are
fewer surprises along the way, and you’ll become a more effective developer. Although GORM
pretty much eliminates the need for a data access layer like those you typically find in pure Java
applications, it doesn’t remove the need for a structured way to group units of logic. In the next
chapter, we’ll be looking at Grails services that provide exactly this. Don’t go away!

289

■ ■ ■

C H A P T E R 1 1

Services

A common pattern in the development of enterprise software is the so-called service layer
that encapsulates a set of business operations. With Java web development, it is generally con-
sidered good practice to provide layers of abstraction and reduce coupling between the layers
within an MVC application.

The service layer provides a way to centralize application behavior into an API that can be
utilized by controllers or other services. Many good reasons exist for encapsulating logic into a
service layer, but the following are the main drivers:

• You need to centralize business logic into a service API.

• The use cases within your application operate on multiple domain objects and model
complex business operations that are best not mixed in with controller logic.

• Certain use cases and business processes are best encapsulated outside a domain object
and within an API.

If your requirements fall into one of these categories, creating a service is probably what
you want to do. Services themselves often have multiple dependencies; for example, a com-
mon activity for a service is to interact with the persistence layer whether that is straight JDBC
or an ORM system like Hibernate.

Clearly, whichever system you use, you are potentially dependent on a data source or a
session factory or maybe just another service. Configuring these dependencies in a loosely
coupled way has been one of the main challenges facing early adopters of the J2EE technology.

Like many other software development challenges, this problem is solved by a software
design pattern called Inversion of Control (IoC), or dependency injection, and projects such as
Spring implement this pattern by providing an IoC container.

Grails uses Spring to configure itself internally, and it is this foundation that Grails builds
on to provide services by convention. Nevertheless, let’s jump straight into looking at what
Grails services are and how to create a basic service.

Service Basics
Services, like other Grails artefacts, follow a convention and don’t extend any base class. For
example, say you decide to move much of the gTunes application’s business logic into a ser-
vice; you would need to create a class called StoreService located in the grails-app/services/
directory.

290 C H A P T E R 1 1 ■ S E R V I C E S

Unsurprisingly, there is a Grails target that allows you to conveniently create services.
Building on what was just mentioned, to create the StoreService you can execute the
create-service target, which will prompt you to enter the name of the service, as demon-
strated in Listing 11-1.

Listing 11-1. Running the create-service Target

$ grails create-service

Welcome to Grails 1.1 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /Development/Tools/grails

Base Directory: /Development/Projects/gTunes
Running script /Development/Tools/grails/scripts/CreateService.groovy
Environment set to development
Service name not specified. Please enter:
com.g2one.gtunes.Store
 [copy] Copying 1 file to /.../gTunes/grails-app/services/com/g2one/gtunes
Created Service for Store
 [copy] Copying 1 file to /.../gTunes/test/integration/com/g2one/gtunes
Created Tests for Store

Here you can enter com.g2one.gtunes.Store as the name of the service, and the target will
create the StoreService class automatically and put it in the right place. The result will resem-
ble something like Listing 11-2.

Listing 11-2. grails-app/services/com/g2one/gtunes/StoreService.groovy

package com.g2one.gtunes

class StoreService {

 boolean transactional = true

 def serviceMethod() {

 }
}

The service contains one method, which is just a placeholder for a real method. The
more interesting aspect is the transactional property, which is discussed in detail later in this
chapter.

C H A P T E R 1 1 ■ S E R V I C E S 291

Services and Dependency Injection
It is important to note that services are singletons by default, which means there is only ever one
instance of a service. So, how do you go about getting a reference to a service within a controller,
for example? Well, as part of Spring’s dependency injection support, Spring has a concept called
autowiring that allows dependencies to automatically be injected by name or type.

Grails services can be injected by name into a controller. For example, simply by creat-
ing a property with the name storeService within the StoreController, the StoreService
instance will automatically be available to the controller. Listing 11-3 demonstrates how this
is done.

Listing 11-3. Injecting a Service Instance into a Controller

class StoreController {
 def storeService
 ...
}

■Note The storeService property is dynamically typed in Listing 11-3. The property can be statically
typed, and injection will work in the same way. It should be noted that using a dynamically typed reference
allows for dummy versions of the service to easily be injected for the purpose of testing the controller.

The convention used for the name of the property is basically the property name represen-
tation of the class name. In other words, it is the class name with the first letter in lowercase
following the JavaBean convention for property names. You can then invoke methods on the
singleton StoreService instance, even though you have done nothing to explicitly look it up or
initialize it. The underlying Spring IoC container handles all of this automatically.

You can use the same convention to inject services into other services, hence allowing
your services to interact within one another.

It is important that you let Grails inject service instances for you. You should never be instan-
tiating instances of service classes directly. Later in this chapter, we will discuss transactions, and
you will see that there is some special magic going on when Grails is allowed to inject service
instances for you. You will get none of those benefits if you are creating service instances yourself.

Now that you understand the basics of services, we’ll show an example of implementing a
service.

Services in Action
The StoreController in the gTunes application contains quite a bit of business logic and com-
plexity at the moment. Pulling that logic out of the controller and into a service is a good idea.

292 C H A P T E R 1 1 ■ S E R V I C E S

In general, you should strive to keep your Grails controllers tight and concise. You should not
let a lot of business complexity evolve in a controller. When much complexity starts to evolve
in a controller, that should be a red flag to you, and you should consider refactoring the con-
troller to pull out a lot of that complexity. Much of that complexity will fit perfectly into a
service or multiple services.

Let’s take a look at one specific area of the controller that is a good candidate for some
refactoring. That area is the showConfirmation step in the buyFlow flow. Listing 11-4 shows a
relevant piece of the StoreController.

Listing 11-4. Web Flow Logic in StoreController

package com.g2one.gtunes

class StoreController {

 def buyFlow = {
 ...
 showConfirmation {
 on('confirm') {
 // NOTE: Dummy implementation of transaction processing
 // a real system would integrate an e-commerce solution
 def user = flow.user
 def albumPayments = flow.albumPayments
 def p = new Payment(user:user)
 flow.payment = p
 p.invoiceNumber = "INV-${user.id}-${System.currentTimeMillis()}"
 def creditCard = flow.creditCard
 assert creditCard.validate()
 // TODO: Use credit card to take payment
 // ...

 // Once payment taken update user profile
 for(ap in albumPayments) {
 ap.user = user
 // validation should never fail at this point
 assert ap.validate()

 p.addToAlbumPayments(ap)
 assert p.save(flush:true)

 ap.album.songs.each { user.addToPurchasedSongs(it) }
 user.addToPurchasedAlbums(ap.album)
 assert user.save(flush:true)
 }
 }.to 'displayInvoice'

C H A P T E R 1 1 ■ S E R V I C E S 293

 }
 ...
 }
 ...
}

There is a lot going on here, and this is just one step in a series of steps in a Web Flow. You
should pull most of this code out of the controller and put it into a service.

Defining a Service
The code that is being refactored out of the StoreController should be put into a service called
StoreService. The StoreService class should be defined in the grails-app/services/com/
g2one/gtunes/ directory. That refactoring would yield a StoreService like the one shown in
Listing 11-5.

Listing 11-5. The purchaseAlbums Method in the StoreService

package com.g2one.gtunes

class StoreService {

 static transactional = true

 Payment purchaseAlbums(User user, creditCard, List albumPayments) {

 def p = new Payment(user:user)
 p.invoiceNumber = "INV-${user.id}-${System.currentTimeMillis()}"
 if(!creditCard.validate()) {
 throw new IllegalStateException("Credit card must be valid")
 }
 // TODO: Use credit card to take payment
 // ...

 // Once payment taken update user profile
 for(ap in albumPayments) {
 ap.user = user
 // validation should never fail at this point
 if(!ap.validate()) {
 throw new IllegalStateException("Album payment must be valid")
 }

 p.addToAlbumPayments(ap)
 if(!p.save(flush:true)) {
 throw new IllegalStateException("Payment must be valid")
 }

294 C H A P T E R 1 1 ■ S E R V I C E S

 ap.album.songs.each { user.addToPurchasedSongs(it) }
 user.addToPurchasedAlbums(ap.album)
 }
 if(!user.save(flush:true)) {
 throw new IllegalStateException("User must be valid")
 }
 return p
 }
}

Using a Service
The StoreController can now take advantage of the purchaseAlbums method in the StoreService.
To do this, the StoreController needs to define the storeService property and then invoke the
purchaseAlbums method on that property, as shown in Listing 11-6.

Listing 11-6. Calling the purchaseAlbums Method in the StoreController

package com.g2one.gtunes

class StoreController {

 def storeService

 def buyFlow = {
 ...
 showConfirmation {
 on('confirm') {
 // NOTE: Dummy implementation of transaction processing,
 // a real system would integrate an e-commerce solution
 def user = flow.user
 def albumPayments = flow.albumPayments
 flow.payment =
 storeService.purchaseAlbums(user,
 flow.creditCard,
 flow.albumPayments)
 }
 }.to 'displayInvoice'
 }
 ...
}

C H A P T E R 1 1 ■ S E R V I C E S 295

Transactions
As mentioned previously, services often encapsulate business operations that deal with several
domain objects. If an exception occurs while executing changes, you may not want any earlier
changes to be committed to the database.

Essentially, you want an all-or-nothing approach, also known as a transaction. Transac-
tions are essential for maintaining database integrity via their ACID properties, which have
probably been covered in every book that has used a relational database. Nevertheless, we’ll
give you a quick look at them here. ACID stands for atomicity, consistency, isolation, and
durability:

• Atomicity: This refers to how operations on data within a transaction must be atomic. In
other words, all tasks within a transaction will be completed or none at all will be, thus
allowing the changes to be rolled back.

• Consistency: This requires that the database be in a consistent state before and after any
operations occur. There is no point attempting to complete a transaction if the database
is not in a legal state to begin with, and it would be rather silly if an operation left the
database’s integrity compromised.

• Isolation: This refers to how transactions are isolated from all other operations. Essen-
tially, this means other queries or operations should never be exposed to data that is in
an intermediate state.

• Durability: Once a transaction is completed, durability guarantees that the transaction
cannot possibly be undone. This is true even if system failure occurs, thus ensuring the
committed transaction cannot at this point be aborted.

Grails services may declare a static property named transactional. When the
transactional property is set to true, the methods of the service are configured for
transaction demarcation by Spring. What this does is create a Spring proxy that wraps
each method call and provides transaction management.

Grails handles the entire automatic runtime configuration for you, leaving you to concen-
trate on writing the logic within your methods. If the service does not require any transaction
management, set the transactional property to false to disable transactions.

If a service needs to impose its own fine-grained control over transaction management,
that is an option as well. The way to do this is to assign the transactional property a value
of false and take over the responsibility of managing transactions yourself. The static
withTransaction method may be called on any domain class, and it expects a closure to be
passed as an argument. The closure represents the transaction boundary. See Listing 11-7
for an example.

296 C H A P T E R 1 1 ■ S E R V I C E S

Listing 11-7. Using withTransaction in a Service

package com.g2one.gtunes

class GtunesService {

 // turn off automatic transaction management
 static transactional = false

 void someServiceMethod() {

 Album.withTransaction {
 // everything in this closure is happening within a transaction
 // which will be committed when the closure completes
 }

 }

}

If the closure that is passed to the withTransaction method throws an exception, then the
transaction will be rolled back. Otherwise, the transaction is committed.

If you want to take explicit control over rolling back the transaction, that is simple to do as
well. It turns out that an instance of the org.springframework.transaction.TransactionStatus
interface is being passed as an argument to the closure. One of the methods defined by the
TransactionStatus interface is setRollbackOnly().1 Calling the setRollbackOnly() method will
ensure that the transaction gets rolled back. Listing 11-8 demonstrates how to take advantage
of this.

Listing 11-8. Using the TransactionStatus Argument

package com.g2one.gtunes

class GtunesService {

 // turn off automatic transaction management
 static transactional = false

 void someServiceMethod() {

 Album.withTransaction { tx ->
 // do some work with the database

1. You can find the full documentation for the TransactionStatus interface at http://static.
springframework.org/spring/docs/2.5.x/api/.

C H A P T E R 1 1 ■ S E R V I C E S 297

 // if the transaction needs to be rolled back for
 // any reason, call setRollbackOnly() on the
 // TransactionStatus argument...
 tx.setRollbackOnly()
 }

 }

}

Controllers and other Grails artefacts will, of course, need to get hold of a reference to the
singleton StoreService. As described earlier in this chapter, the best way to get hold of a refer-
ence to a service is to take advantage of the automatic dependency injection provided by Grails.

Scoping Services
You must be careful about storing state in a service. By default all services are scoped as single-
tons and can be used concurrently by multiple requests. Further, access to service methods is
not synchronized. For stateless services, none of that is a problem. If a service must maintain
state, then it should be scoped to something other than singleton.

Grails supports several scopes for services. Which scope you use will depend on how your
application uses the service and what kind of state is maintained in the service. The support
scopes are as follows:

• prototype: A new service is created every time it is injected into another class.

• request: A new service will be created per request.

• flash: A new service will be created for the current and next requests only.

• flow: In Web Flows, the service will exist for the scope of the flow.

• conversation: In Web Flows, the service will exist for the scope of the conversation, in
other words, a root flow and its subflows.

• session: A service is created for the scope of a user session.

• singleton (default): Only one instance of the service ever exists.

■Note If a service uses flash, conversation, or flow scope, then the service class must implement the
java.io.Serializable interface. Services using these scopes can be used only within the context of a Web
Flow. See Chapter 9 for more details about Web Flow.

If a service is to be scoped using anything other than singleton, the service must declare a
static property called scope and assign it a value that is one of the support scopes listed earlier.
See Listing 11-9.

298 C H A P T E R 1 1 ■ S E R V I C E S

Listing 11-9. A request-Scoped Service

class LoanCalculationService {

 boolean transactional = true

 // this is a request scoped service
 static scope = 'request'

 ...

}

Choose the service scope carefully, and make sure your scope is consistent with the appli-
cation’s expectations of the service. Prefer stateless services; for these, the default scope of
singleton is almost always optimum. When a service must maintain state, choose the scope
that satisfies the application’s requirements.

Testing Services
Since much of your business logic and complexity is encapsulated in services, it is important
that these components are tested. As far as your tests are concerned, a service is just another
class and can be tested as such. Note that integration tests participate in automatic depen-
dency injection, so service instances can be injected into an integration test. Unit tests do not
participate in automatic dependency injection. A unit test should create its own instances of a
service class as necessary.

When unit testing a controller (or any other component) that uses a service, if the service
is dynamically typed in the component that is being tested, then that component should be
easy to test independent of the service dependency. For example, a Map or Expando object could
be passed to a controller constructor to act as a dummy version of the service. An approach like
this allows individual components to be unit tested in isolation. Isolation testing is all about
testing individual components independently from their dependencies. Dynamic typing is one
aspect of Groovy that makes isolation testing much easier to achieve compared to statically
typed languages such as Java.

Exposing Services
The services you write as part of a Grails application contain a large share of the business
logic involved in the application. Those services are easily accessed from just about any-
where in the application using Grails’ automatic dependency injection. It makes sense that a
lot of that business logic may be useful to other Grails applications. In fact, it may be useful
to other applications that may not be Grails applications. The automatic dependency injec-
tion works only within the application. There really isn’t any way to inject those services into

C H A P T E R 1 1 ■ S E R V I C E S 299

other applications. However, it is possible to access those services from other applications,
and Grails makes that really easy to do.

Making a service available to other process is known as exposing the service. A number
of Grails plugins are available that support exposing services using various remoting technolo-
gies. For example, there is a plugin that greatly simplifies exposing services using the Java
Management Extensions (JMX) technology.2 JMX has been part of the Java Platform since the
J2SE 5.0 release and provides a really simple mechanism for monitoring and managing
resources within an application.

You can install the JMX plugin into a project using the install-plugin target, as shown in
Listing 11-10.

Listing 11-10. Installing the JMX Plugin

$ grails install-plugin jmx

Welcome to Grails 1.1 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /Development/Tools/grails

Base Directory: /Development/Projects/gTunes
Running script /Development/Tools/grails/scripts/InstallPlugin.groovy
Environment set to development
Reading remote plug-in list ...
Installing plug-in jmx-0.4
[mkdir] Created dir: /Users/jeff/.grails/1.1/projects/gTunes/plugins/jmx-0.4
 [unzip] Expanding: /.../plugins/grails-jmx-0.4.zip into /.../plugins/jmx-0.4
Executing remoting-1.0 plugin post-install script ...
Plugin jmx-0.4 installed

Like other remoting plugins that are available for Grails, the JMX plugin will look in all ser-
vice classes for a property named expose. The expose property should be a list of Strings, and if
the list contains the string jmx, then the plugin will expose that service using JMX.

Listing 11-11 shows a service in the gTunes application that has been exposed using JMX.

Listing 11-11. The GtunesService Is Exposed Using JMX

package com.g2one.gtunes

class GtunesService {

 static transactional = true

 static expose = ['jmx']

2. You can find more information about JMX at http://java.sun.com/javase/technologies/core/
mntr-mgmt/javamanagement/.

300 C H A P T E R 1 1 ■ S E R V I C E S

 int getNumberOfAlbums() {
 Album.count()
 }

 int getNumberOfAlbumsForGenre(String genre) {
 Album.countByGenre(genre)
 }
}

The GtunesService contains a single method called getNumberOfAlbums, which returns the
number of Album objects that are currently in the database. The service may contain any num-
ber of methods. All of the methods in the service will be exposed as JMX operations.

In terms of code, the only thing you need to do to expose your services using JMX is include
jmx in the value of the expose property. It could not be simpler! There is another step that does
not involve code. The way to enable remote access to services that have been exposed using
JMX is to set the com.sun.management.jmxremote system property when the Grails application
starts. A simple way to do this is to assign a value to the JAVA_OPTS environment variable. The
value should include -Dcom.sun.management.jmxremote. Note that the property does not need
to be assigned a value; the property just needs to be set. For example, in a Bash shell you could
interactively set the environment variable using the code shown in Listing 11-12.

Listing 11-12. Setting JAVA_OPTS in a Bash Shell

export JAVA_OPTS=-Dcom.sun.management.jmxremote

In a Windows shell you could use the code shown in Listing 11-13.

Listing 11-13. Setting JAVA_OPTS in a Windows Shell

set JAVA_OPTS=-Dcom.sun.management.jmxremote

The com.sun.management.jmxremote system property must be set when the Grails applica-
tion starts. Setting it after the Grails application has started will not affect the application.

Versions 5.0 and later of the J2SE include the Java Monitoring and Management Console
known as JConsole. The JConsole application is a GUI tool for interacting with beans that have
been exposed using JMX.

With your Grails application up and running, start JConsole by running the jconsole
command at a command prompt. The application should open with the dialog box shown
in Figure 11-1.

This dialog box allows you select which agent you want to connect to. Typically you will
see just one agent in the list. Find your Grails application in the list, select it, and click the Con-
nect button.

Once you have connected to an agent, the main JConsole window should appear, as
shown in Figure 11-2.

C H A P T E R 1 1 ■ S E R V I C E S 301

Figure 11-1. The Connect to Agent dialog box in JConsole

Figure 11-2. The main JConsole window

302 C H A P T E R 1 1 ■ S E R V I C E S

This main screen displays a lot of information about the Grails process. Click the “MBeans” tab
at the top of the screen to view all the accessible beans. On that screen, you should see a list of all of
your JMX exposed services under the “GrailsApp” folder on the left, as shown in Figure 11-3.

Figure 11-3. Grails services exposed using JMX

Notice the NumberOfAlbums property represented there. In Figure 11-3, that property
has a value of 498. That value was just retrieved from the Grails application by invoking the
getNumberOfAlbums method on the GtunesService. Just like that you have an entirely separate
process communicating with your Grails service! In this case, the process is the JConsole appli-
cation, but that process can be any JMX-aware client.

Select the “Operations” tab near the top of the screen. This tab will list all the operations
that have been exposed by this bean, including all the methods defined in your service, as
shown in Figure 11-4.

Notice that for operations that require parameters, JConsole provides a text box for you to
define the value of the parameter. With that value filled in, you can click the button that con-
tains the operation name. The operation will be invoked remotely, and the return value will be
displayed.

C H A P T E R 1 1 ■ S E R V I C E S 303

Figure 11-4. JMX operations

The JMX plugin is one of several Grails plugins that support exposing services using vari-
ous remoting technologies. There is an XML-RPC plugin, and there is a Remoting plugin that
allows services to be exposed via RMI, Hessian, Burlap, and Spring’s HttpInvoker. The XFire
plugin and the Axis2 plugin each support exposing services via SOAP. The XFire plugin is cov-
ered in detail in Chapter 15.

All of the remoting plugins use the same expose property in a service class as the trigger for
exposing a service using any particular technology. Listing 11-14 shows how you would expose
the GtunesService using JMX and XFire.

Listing 11-14. Exposing a Service Using JMX and XFire

package com.g2one.gtunes

class GtunesService {

 static transactional = true

 static expose = ['jmx', 'xfire']

 int getNumberOfAlbums() {
 Album.count()
 }

304 C H A P T E R 1 1 ■ S E R V I C E S

 int getNumberOfAlbumsForGenre(String genre) {
 Album.countByGenre(genre)
 }
}

Remember that in order for that to work, you need to have the JMX plugin and the XFire
plugin installed.

Exposing Grails services is a great way to allow applications to access business logic inside
a Grails application. In fact, you could build a Grails application that is just a service layer.
That application might consist of nothing more than domain classes and services that provide
access to the data, similar to the GtunesService shown earlier. The application would not nec-
essarily need to have any controllers, any views, or anything else.

Summary
Services are an important component in almost any nontrivial Grails application. Services are
where much of the application’s business logic and complexity belong.

In this chapter, you saw how Grails helps simplify an application by encouraging the iso-
lation of that complexity into services. You learned how you can easily take advantage of the
power of Spring’s dependency injection capabilities without the burden of having to write con-
figuration files to instrument Spring.

You also saw how transaction management works with respect to Grails services. For
most scenarios, the default method-level transaction demarcation is a perfect fit. For scenarios
where the application needs more fine-grained control over transactions, Grails provides a
really simple mechanism for dealing with those scenarios.

You have a lot of options for exposing Grails services using any number of remoting
technologies.

You should make a habit of taking advantage of the power and flexibility provided by
Grails services. If you do that, your applications will be easier to write, easier to understand,
easier to maintain, and easier to test.

367

■ ■ ■

C H A P T E R 1 3

Plugins

Up until now, you have been a consumer of the Grails plugin system at various points
throughout the book. In Chapter 8, you used the Searchable plugin to add full-text search
to your Grails application and explored how to use the Yahoo UI plugin as an alternative Ajax
provider. And in the previous chapter, you had the chance to use both the Mail and Quartz
plugins. Now it’s time to turn the tables and become a plugin author. Plugins are, quite sim-
ply, the cornerstone of Grails. Grails itself is basically a plugin runtime with little knowledge
beyond how to load and configure an installed set of plugins.

The Grails plugin system is very flexible—so much so that it would be quite reasonable
to write an entire book on the subject. In this chapter, we aim to summarize the core concepts
and demonstrate some common use cases for the plugin system. However, the full extent of
what is achievable with the plugin system is left to your imagination.

Even if you don’t plan to write a plugin to distribute to the world, we recommend you take
the time to read this chapter. Grails plugins are not just a way to enhance the functionality of
an existing Grails application; they are also an effective way to modularize your code. Later in
this chapter, we will demonstrate how you can use plugins to split your Grails application into
separate maintainable plugins that are composed together at runtime.

Plugin Basics
The core of Grails is a plugin runtime environment. However, to make it immediately useful, it
ships with a default set of plugins that you have already been learning about, including GORM
and Grails’ MVC framework. Along with the default set of plugins, Grails ships with a set of
commands to automatically discover and install new plugins. Let’s take a look at these first.

Plugin Discovery
The Grails plugin community is a hive of activity and one of the most exciting areas of Grails.
As of this writing, more than 80 plugins are available from the central repository. Providing a
range of functionality from job scheduling to search to reporting engines, all the plugins are
discoverable through the grails list-plugins command. To run the list-plugins command,
simply type grails list-plugins in a command window, as shown in Listing 13-1.

Listing 13-1. Running the list-plugins Command

$ grails list-plugins

368 C H A P T E R 1 3 ■ P LU G I N S

What this will do is go off to the Grails central repository and download the latest pub-
lished plugin list. The list is then formatted and printed to the console. You can see some
typical output from the list-plugins command in Listing 13-2, shortened for brevity.

Listing 13-2. Output from the list-plugins Command

Plug-in list out-of-date, retrieving..
 [get] Getting: http://plugins.grails.org/.plugin-meta/plugins-list.xml
...

Plug-ins available in the Grails repository are listed below:

acegi <0.3> -- Grails Spring Security 2.0 Plugin
aop <no releases> -- No description available
audit-logging <0.4> -- adds hibernate audit logging and onChange
 event handlers to GORM domain classes
authentication <1.0> -- Simple, extensible authentication services
 with signup support
...

In the left column, you can see the name of the plugin, while in the middle is the latest
released version of the plugin. Finally, on the right of the output, you can see the short descrip-
tion for any given plugin. If you want to obtain more information about a particular plugin, you
can use the plugin-info command. Listing 13-3 shows how to obtain more information about
the audit-logging plugin from Listing 13-2 using the plugin-info command.

Listing 13-3. Using the plugin-info Command to Get Detailed Plugin Information

$ grails plugin-info audit-logging
...
--
Information about Grails plugin
--
Name: audit-logging | Latest release: 0.4
--
adds hibernate audit logging and onChange event handlers to GORM domain classes
--
Author: Shawn Hartsock
--
Find more info here: http://www.grails.org/Grails+Audit+Logging+Plugin
--

C H A P T E R 1 3 ■ P L U G I N S 369

The Audit Logging plugin adds an instance hook to domain
objects that allows you to hang Audit events off of them.
The events include onSave, onUpdate, onChange, onDelete and
when called the event handlers have access to oldObj and newObj definitions that
will allow you to take action on what has changed.

--
Available full releases: 0.3 0.4 0.4-SNAPSHOT

As you can see with the plugin-info command, you get more information about the plugin
including a long description, a link to the documentation (in this case http://www.grails.org/
Grails+Audit+Logging+Plugin), who the author is, and all the past release version numbers.

Plugin Installation
This brings us nicely to the topic of plugin installation. To install the audit-logging plugin, you
can use the install-plugin command as follows:

$ grails install-plugin audit-logging

However, if you require a specific version of the plugin, you can use one of the version
numbers displayed in the Available full releases: field of Listing 13-3. Listing 13-4 demon-
strates how to install version 0.3 of the audit-logging plugin.

Listing 13-4. Installing a Specific Version of a Plugin with the install-plugin Command

$ grails install-plugin audit-logging 0.3

After you install a Grails plugin, you can find out what plugins you already have installed
by running the list-plugins command discussed in the previous section. You’ll notice that,
after the list of plugins available in the repository, the list-plugins command shows the plu-
gins you currently have installed, as shown in Listing 13-5.

Listing 13-5. Finding Out Which Plugins You Have Installed with list-plugins

Plugins you currently have installed are listed below:

audit-logging 0.4 -- adds hibernate audit logging and onChange
 event handlers to GORM domain classes

If you have multiple Grails applications in development that share a common set of
plugins, it may well be useful to install a plugin globally for all applications. To do this, you
can pass the -global flag to the install-plugin command. For example, Listing 13-6 shows
how to install the code-coverage plugin, which provides test coverage reports powered by
Cobertura, for all applications.

370 C H A P T E R 1 3 ■ P LU G I N S

Listing 13-6. Installing a Plugin Globally Using the -global Flag

$ grails install-plugin -global code-coverage

If you no longer need a particular plugin, then you can use the counterpart to the
install-plugin command, which is called, unsurprisingly, uninstall-plugin. The
uninstall-plugin command works exactly like the install-plugin command; it simply
takes the name of the plugin to uninstall, as shown in Listing 13-7.

Listing 13-7. Uninstalling Plugins with the uninstall-plugin Command

$ grails uninstall-plugin audit-logging

Local Plugins
Of course, the plugins you create may not necessarily live in the central Grails repository. Grails
plugins are packaged as simple zip files, and if you downloaded a plugin from elsewhere, you
can install it by simply running the install-plugin command and passing in the location on
disk of the plugin. Listing 13-8 shows how to install a plugin located in your home directory
on a Unix system.

Listing 13-8. Installing a Local Plugin

$ grails install-plugin ~/grails-audit-logging-0.3.zip

To ease distribution within your team, instead of keeping your plugins locally on disk,
you may decide to host your plugins on a local web server. In that case, the install-plugin
command also supports plugin installation over HTTP. Listing 13-9 shows how to install the
audit-logging plugin over HTTP, bypassing Grails’ plugin autodiscovery mechanism.

Listing 13-9. Installing Plugins Over HTTP

$ grails install-plugin http://plugins.grails.org/grails-audit-logging/tags/➥

LATEST_RELEASE/grails-audit-logging-0.4.zip

Now that you’ve learned the basics of plugin discovery and installation, let’s move onto
how you actually go about creating a plugin. We’ll be demonstrating the basics of plugin cre-
ation and distribution. After that, we’ll show you how to create some useful plugins to enhance
and modularize the gTunes sample application.

Creating Plugins
Creating plugins in Grails is as simple as creating regular applications. All you need to do is run
the grails create-plugin command and specify a name for your plugin. In fact, what you will
soon discover is that a Grails plugin is a Grails application. To understand this, create a simple
Grails plugin called simple-cache that can provide caching services to a Grails application. You
do this using the create-plugin command, as shown in Listing 13-10.

C H A P T E R 1 3 ■ P L U G I N S 371

Listing 13-10. Creating a Plugin with the create-plugin Command

$ grails create-plugin simple-cache

The result is what looks like a regular Grails application. You have all the typical resources
that make up an application, including a grails-app directory. However, on closer inspection,
you’ll notice there is a file called SimpleCacheGrailsPlugin.groovy in the root of the project.
This file contains a class that represents the plugin descriptor. Figure 13-1 shows the plugin
descriptor residing snugly in the root of the project.

Figure 13-1. The simple-cache plugin descriptor

Providing Plugin Metadata
The plugin descriptor serves a number of purposes. The first and primary purpose is for the
plugin author to provide metadata about the plugin such as the author name, version number,
description, and so on. Listing 13-11 shows the SimpleCacheGrailsPlugin class and the place-
holder fields used to supply this information.

Listing 13-11. The SimpleCacheGrailsPlugin Plugin Descriptor

class SimpleCacheGrailsPlugin {
 def version = 0.1
 def dependsOn = [:]

372 C H A P T E R 1 3 ■ P LU G I N S

 // TODO Fill in these fields
 def author = "Your name"
 def authorEmail = ""
 def title = "Plugin summary/headline"
 def description = 'Brief description of the plugin.'
 ...
}

Properties such as author, title and so on, appear in the list-plugins and plugin-info
commands when a plugin is published to a Grails plugin repository. The following list summa-
rizes the available properties and what they represent:

• author: The name of the plugin author

• authorEmail: An e-mail contact address for the author

• title: A short title for the plugin to appear in the right column of the list-plugins com-
mand (see Listing 13-2)

• description: A longer, more detailed description that is displayed by the plugin-info
command

• documentation: A link to the location of the documentation for the plugin

All the properties in this list are optional; however, providing this information will help
others understand the purpose of your plugin. Listing 13-12 shows the simple-cache plugin’s
metadata information.

Listing 13-12. The simple-cache Plugin Descriptor with Metadata Provided

class SimpleCacheGrailsPlugin {
 def version = 0.1
 def dependsOn = [:]

 def author = "Graeme Rocher"
 def authorEmail = "graeme@g2one.com"
 def title = "A simple caching plugin"
 def description = 'A plugin that provides simple caching services'
 ...
}

You may have noticed the dependsOn property, which is currently assigned an empty Map
literal. This property allows you to specify which plugin or plugins this plugin depends on. As
an example, say your plugin depends on the presence of GORM in a Grails application; you can
specify this by using the plugin name and version number:

def dependsOn = [hibernate:"1.1"]

C H A P T E R 1 3 ■ P L U G I N S 373

As well as specifying a simple version number, the dependsOn version syntax also allows
version ranges, including wildcards. As an example, the following two dependsOn expressions
are equally valid:

def dependsOn = [hibernate:"1.0 > 1.1"]
def dependsOn = [hibernate:"* > 1.1"]

The first example specifies that the plugin depends on any version of the hibernate plugin
between versions 1.0 and 1.1, while the second expression says that the plugin supports any
version of the hibernate plugin up to version 1.1, inclusive.

Once the dependsOn property is specified, when a user installs a plugin via the
install-plugin command, Grails will automatically attempt to install any dependent
plugins if they aren’t already installed. This technique is often referred to as transitive
dependencies resolution, and it is implemented by many build systems (such as Ivy, which
is discussed in Chapter 12) for JAR dependencies.

Supplying Application Artefacts
One of the more obvious ways a plugin can enhance an existing application is by providing a
new artefact, such as a controller, tag library, or service.

■Note Throughout the source code and documentation of Grails, the word artefact is used to refer to a
Groovy file that fulfills a certain concept (such as a controller, tag library, or domain class). It is spelled using
the British English spelling of artefact as opposed to artifact, so we will be using that spelling throughout the
book to maintain consistency with the APIs.

Because a Grails plugin is simply a Grails application, supplying an artefact is a simple
matter of creating it just as you would in a regular application. For the simple-cache plugin,
you’re going to implement a service that provides application layer caching. To do so, simply
use the create-service command from the root of the plugin:

$ grails create-service com.g2one.cache.Cache

Once completed, you’ll end up with a new service at the location grails-app/services/
com/g2one/cache/CacheService.groovy. Because it’s pretty simple to do, you’ll also be imple-
menting a little tag library to perform content-level caching. To create the tag library, run the
create-tag-lib command:

$ grails create-tag-lib com.g2one.cache.Cache

Note that since a Grails plugin is simply a Grails application, you can run it just like a Grails
application! Just use the grails run-app command, and you’re on your way. This has signifi-
cant benefits for the plugin developer in that plugin development is not very different from
regular application development. You can run your plugin like a regular application, and you

374 C H A P T E R 1 3 ■ P LU G I N S

can also test your plugin like a regular application using the test-app command. You can even
install other plugins into a plugin, something that is critical when developing a plugin that has
dependencies on other plugins.

As for the CacheService and the CacheTagLib, we’ll get to the implementation details of
these later. For the moment, all you need to know is that, when you package up your plugin for
distribution, it will provide two new artefacts: a tag library and a service.

Plugin Hooks
Let’s return to the plugin descriptor. As well as providing metadata about the plugin, the
descriptor also enables you to supply hooks into the plugin runtime. Each hook is defined as a
closure property and allows the plugin to participate in the various phases of the plugin life
cycle. The hooks are listed here in the order of their execution:

• doWithWebDescriptor: This gets passed the XML for the web.xml file that has been parsed
by Groovy’s XmlSlurper into a GPathResult. See the “Modifying the Generated WAR
Descriptor” section later in the chapter for more information on this one.

• doWithSpring: This allows participation in the runtime configuration of Grails’ underly-
ing Spring ApplicationContext. See the “Providing Spring Beans” section for more
information.

• doWithDynamicMethods: Executed after the construction of the ApplicationContext, this
is the hook that plugins should use to provide new behavior to Grails classes. See the
“Using Metaprogramming to Enhance Behavior” section later in the chapter for more
information.

• doWithApplicationContext: This is executed after Grails’ ApplicationContext has
been constructed. The ApplicationContext instance is passed to this hook as the first
argument.

By default, the simple-cache plugin you created earlier comes with empty implementa-
tions of all of these. If you don’t plan to implement any of these hooks, you can simply delete
them from the plugin descriptor. Listing 13-13 shows the various plugin hooks, just waiting to
be implemented.

■Note If you merely want to use plugins to provide application modularity, then you may want to skip to
the “Packaging and Distributing a Grails Plugin” section because the following sections go into significant
detail on how to hook into all aspects of the Grails plugin system.

Listing 13-13. Plugin Hooks in the simple-cache Plugin

class SimpleCacheGrailsPlugin {
 def version = 0.1
 ...
 def doWithWebDescriptor = { xml -> }

C H A P T E R 1 3 ■ P L U G I N S 375

 def doWithSpring = {}

 def doWithDynamicMethods = { applicationContext -> }

 def doWithApplicationContext = { applicationContext -> }

}

Plugin Variables
A number of implicit variables are available within the context of these hooks that allow you to
inspect the conventions within a running Grails application. The following are the available
variables and associated descriptions:

• application: An instance of the org.codehaus.groovy.grails.commons.GrailsApplication
class that provides information about the loaded classes and the conventions within them

• manager: An instance of the org.codehaus.groovy.grails.plugins.GrailsPluginManager
class that allows you to find out what other Grails plugins are installed

• plugin: A reference to the org.codehaus.groovy.grails.plugins.GrailsPlugin class,
which allows you to find out various information about the plugin including its name,
version, and dependencies

The GrailsApplication class is typically the most critical to understand if you plan to
implement any hooks that work with the Grails conventions. Essentially, it defines a number
of dynamic properties that map to each concept in a Grails application. For example, to obtain
a list of the controller classes in a GrailsApplication, you can do this:

def controllerClasses = application.controllerClasses

Note that when we refer to classes, we’re not talking about instances of the java.lang.
Class interface but of the org.codehaus.groovy.grails.commons.GrailsClass interface that
defines a number of methods to inspect the conventions within a GrailsApplication for a
particular artefact type.

For example, given the CacheService you created earlier, Listing 13-14 demonstrates some
of the methods of the GrailsClass interface and how they behave.

Listing 13-14. Using the Grails Convention APIs

GrailsClass serviceClass =
 application.getServiceClass("com.g2one.cache.CacheService")

assert "CacheService" == serviceClass.shortName
assert "Cache" == serviceClass.name
assert "com.g2one.cache.CacheService" == serviceClass.fullName
assert "cacheService" == serviceClass.propertyName
assert "cache" == serviceClass.logicalPropertyName
assert "com.g2one.cache" == serviceClass.packageName
assert true == serviceClass.getPropertyValue("transactional")

376 C H A P T E R 1 3 ■ P LU G I N S

You’ll notice from Listing 13-14 the usage of the getServiceClass method to obtain the
CacheService by name. The getServiceClass method is another dynamic method available on
the GrailsApplication class. Essentially, for each artefact type, the GrailsApplication class
provides dynamic methods to access the artefacts of that type, which are summarized here:

• get*Classes: Obtain a list of all the GrailsClass instances for a particular artefact type,
such as with getControllerClasses() or via property access such as controllerClasses.

• get*Class(String name): Obtain a specific GrailsClass instance by name, as in
getControllerClass("HelloController").

• is*Class(Class theClass): Inquire if a given java.lang.Class is a particular artefact
type, as in isControllerClass(myClass).

The asterisk in the previous method names can be substituted for the relevant artefact
type you are interested in. Table 13-1 summarizes the different artefact types, as well as shows
an example of the typical usage for each.

All of the artefact types in Table 13-1 cover existing artefacts, but Grails also allows you to
add your own artefact types, which we’ll look at in the next section.

Custom Artefact Types
Out of the box, Grails ships with a set of features, including controllers, domain classes, and so on.
As you saw in the previous section, you can access all aspects of these via the GrailsApplication
interface. However, what if you want to add a new artefact type? Take, for example, the existing
Quartz plugin. As you discovered in Chapter 12, Quartz is a job-scheduling API that runs specified
tasks on a scheduled basis. For example, you may want to run some code at 12 p.m. on the last
Friday of every month. Quartz aims to solve these kinds of problems.

Now if you look at the existing artefact types, none of them models the idea of a job. So,
how can you extend Grails and provide new knowledge to it about what a job is? Fortunately,

Table 13-1. Summary of Existing Artefact Types

Artefact Type Example

Bootstrap def bootstrapClasses = application.getBootstrapClasses()

Codec def codecClasses = application.getCodecClasses()

Controller def controllerClasses = application.getControllerClasses()

Domain def domainClasses = application.getDomainClasses()

Filters def filterClasses = application.getFiltersClasses()

Service def serviceClasses = application.getServiceClasses()

TagLib def tagLibClasses = application.getTagLibClasses()

UrlMappings def urlMappingClasses = application.getUrlMappingsClasses()

C H A P T E R 1 3 ■ P L U G I N S 377

you can find the answer in Grails’ org.codehaus.groovy.grails.commons.ArtefactHandler
interface. Listing 13-15 shows the key methods of the ArtefactHandler interface.

Listing 13-15. The ArtefactHandler Interface

public interface ArtefactHandler {
 String getType();
 boolean isArtefact(Class aClass);
 GrailsClass newArtefactClass(Class artefactClass);
}

The getType() method returns the type of the GrailsClass, which will be one of the values
shown in the first column of Table 13-1. The isArtefact(Class) method is responsible for
identifying whether a given class is of the current artefact type based on some convention. For
example, does the class end with the convention Controller? If so, then it’s a controller class.

The newArtefactClass(Class) method will create a new GrailsClass instance for the
given java.lang.Class. The ArtefactHandler interface has other methods, but most of them
are abstracted away from you because when implementing a custom ArtefactHandler, you’ll
typically extend the org.codehaus.groovy.grails.commons.ArtefactHandlerAdapter class.
For example, take a look at Listing 13-16, which shows a possible implementation for the
Quartz plugin.

Listing 13-16. An ArtefactHandler for the Quartz Plugin

1 class JobArtefactHandler extends ArtefactHandlerAdapter {
2
3 static final TYPE = "Job"
4
5 JobArtefactHandler() {
6 super(TYPE, GrailsClass, DefaultGrailsClass, TYPE)
7 }
8
9 boolean isArtefactClass(Class clazz) {
10 // class shouldn't be null and shoudd ends with Job suffix
11 if(!super.isArtefactClass(clazz)) return false
12 // and should have an execute method
13 return clazz.methods.find { it.name == 'execute' } != null
14 }
15 }

There are a few key things to look at in the JobArtefactHandler in Listing 13-16. First take
a look at the constructor on lines 5 to 7:

5 JobArtefactHandler() {
6 super(TYPE, GrailsClass, DefaultGrailsClass, TYPE)
7 }

378 C H A P T E R 1 3 ■ P LU G I N S

The constructor calls the super implementation, passing four arguments:

• The artefact type: In this case, you’re using a constant called TYPE that has the value Job.

• The interface to use for the artefact type: You could extend the GrailsClass interface to
provide a more specific interface such as GrailsJobClass.

• The implementation of the interface for the artefact type: Grails provides a default imple-
mentation in the DefaultGrailsClass, but you could subclass this if you want to provide
custom logic within the artefact type.

• The suffix that the class name should end with for a java.lang.Class to be considered
of the artefact type: The default implementation of the isArtefactClass method in
ArtefactHandlerAdapter will perform a check on the passed java.lang.Class to
ensure that the class name ends with the specified suffix. As you can see on line 11
of Listing 13-16, the logic from the superclass isArtefact method is being reused.

The next thing to note about the code in Listing 13-16 is the implementation of
the isArtefactClass(Class) method, which checks that the class ends with the appro-
priate suffix by calling the superclass implementation of isArtefactClass(Class) and
whether the class possesses an execute method. You can assert your expectations of the
behavior of the JobArtefactHandler by writing a simple unit test, as shown in Listing 13-17.

Listing 13-17. Testing an ArtefactHandler

class JobArtefactHandlerTests extends GroovyTestCase {
 void testIsArtefact() {
 def handler = new JobArtefactHandler()
 assertTrue handler.isArtefactClass(TestJob)
 assertFalse handler.isArtefactClass(JobArtefactHandlerTests)

 GrailsClass jobClass = handler.newArtefactClass(TestJob)
 assertEquals "TestJob", jobClass.shortName
 assertEquals "Test", jobClass.name
 assertEquals "TestJob", jobClass.fullName
 assertEquals "testJob",jobClass.propertyName
 assertEquals "test",jobClass.logicalPropertyName
 assertEquals "", jobClass.packageName
 }
}
class TestJob {
 def execute() {}
}

At this point, there is one thing left to do. You have to tell your plugin about the
ArtefactHandler. Say you were creating the Quartz plugin and you have a QuartzGrailsPlugin
descriptor. If you add an artefacts property that contains a list of provided artefacts, the
plugin will make Grails aware of the JobArtefactHandler:

def artefacts = [new JobArtefactHandler()]

C H A P T E R 1 3 ■ P L U G I N S 379

So once the Quartz plugin is installed, if there is a class within the grails-app/jobs direc-
tory that looks like the one in Listing 13-18, the JobArtefactHandler will approve the class as
being a “job.”

Listing 13-18. An Example Job

class SimpleJob {
 def execute() {
 // code to be executed
 }
}

An added bonus of going through these steps is that suddenly the GrailsApplication
object has become aware of the new artefact type you just added. With this hypothetical Quartz
plugin installed, you can use all the dynamic methods on the GrailsApplication object first
shown in Listing 13-14. Listing 13-19 demonstrates a few examples using the SimpleJob from
Listing 13-18.

Listing 13-19. Using the GrailsApplication Object to Inspect Jobs

def jobClasses = application.getJobClasses()
GrailsClass simpleJobClass = application.getJobClass("SimpleJob")

assert application.isJobClass(SimpleJob)

The key thing to learn from this section is that Grails provides you with an extensible con-
vention-based API. You are in no way restricted by the existing conventions and can easily start
adding your own ideas to the mix. In the next section, we’ll be looking at how the idea of Con-
vention over Configuration (CoC) extends to the runtime configuration of Spring.

Providing Spring Beans
The doWithSpring hook allows you to specify new Spring beans to configure at runtime using
Grails’ BeanBuilder domain-specific language (DSL) for Spring. The intricacies of BeanBuilder
will be described in far more detail in Chapter 16; however, we’ll cover some of the basics here.
Essentially, Grails is built completely on the Spring Framework. Grails has what is known as
an ApplicationContext, which is essentially a container provided by Spring that holds one or
more beans. By default, each bean is a singleton, meaning there is only one of them in the
ApplicationContext.

As you learned in Chapter 11, Grails allows services to be autowired into controllers and
tag libraries. This autowire feature is powered by the Spring container and is often referred to
as dependency injection. It is an extremely powerful pattern that allows you to effectively sepa-
rate out dependencies and the construction of those dependencies. That’s the theory...now
let’s take a look at an example.

Earlier, you created a new service in the simple-cache plugin called CacheService. The
CacheService is going to work in conjunction with a cache provider to provide application-
layer caching to any user of the simple-cache plugin. Since it is a little pointless to reinvent the
wheel and implement your own homegrown caching implementation, you’re going to take
advantage of the Ehcache library.

380 C H A P T E R 1 3 ■ P LU G I N S

You may remember from Chapter 8 that you defined a bean in the grails-app/conf/
spring/resources.groovy file for the gTunes application that used the EhCacheFactoryBean
class provided by Spring. You’re going to use that again here, within the context of doWithSpring.
Listing 13-20 shows how to define a globalCache bean.

Listing 13-20. Defining Beans in doWithSpring

class SimpleCacheGrailsPlugin {
 ...
 def doWithSpring = {
 globalCache(org.springframework.cache.ehcache.EhCacheFactoryBean) {
 timeToLive = 300
 }
 }
}

As a reminder, the name of the bean is the name of the method, which in this case is
globalCache. The bean class is the first argument, while the closure passed as the last argument
allows you to set property values on the bean. In this case, a globalCache bean is configured to
expire entries every 5 minutes (300 seconds). We’ve really only touched the surface of what is
possible with BeanBuilder here and in Chapter 8, so if you’re keen to know more, you could
skip forward to Chapter 16, which contains detailed coverage.

With that done, let’s begin implementing the CacheService. First you need to get a refer-
ence to the globalCache bean defined by the plugin. To do this, simply add a property that
matches the name of the bean to the CacheService, as shown in Listing 13-21.

Listing 13-21. Obtaining Beans Supplied by doWithSpring

import net.sf.ehcache.Ehcache
class CacheService {
 static transactional = false

 Ehcache globalCache
 ...
}

The globalCache property is in bold in Listing 13-15. Note that transactions have been dis-
abled for the service by setting static transactional = false, since transactions won’t be a
requirement for this service.

Now let’s implement the caching logic. When implementing caching, the pattern is typi-
cally that you look up an object from the cache, and if it doesn’t exist, you execute some logic
that obtains the data to be cached. Listing 13-22 shows some pseudocode for this pattern.

C H A P T E R 1 3 ■ P L U G I N S 381

Listing 13-22. The Caching Pattern

def obj = cache.get("myentry")
if(!obj) {
 obj = ... // do some complex task to obtain obj
 cache.put("myentry", obj)
}
return obj

However, given that you have the power of closures at your disposal, it makes more sense
to take advantage of them to come up with a more elegant solution. Listing 13-23 shows how to
implement caching of entire logical blocks using closures.

Listing 13-23. Caching the Return Value of Blocks of Code Using Closures

1 import net.sf.ehcache.Ehcache
2 import net.sf.ehcache.Element
3
4 class CacheService {
5 ...
6 def cacheOrReturn(Serializable cacheKey, Closure callable) {
7 def entry = globalCache?.get(cacheKey)?.getValue()
8 if(!entry) {
9 entry = callable.call()
10 globalCache.put new Element(cacheKey, entry)
11 }
12 return entry
13 }
14 }

To understand what the code is doing in Listing 13-23, let’s step through it line by line.
First, on line 7 an entry is obtained from the globalCache bean, which is an instance of the
net.sf.ehcache.Ehcache class:

7 def entry = globalCache?.get(cacheKey)?.getValue()

Notice how you can use Groovy’s safe-dereference operator ?. to make sure that a
NullPointerException is never thrown when accessing the value, even if the globalCache
property is null! The get method of the globalCache instance returns a net.sf.ehcache.
Element instance, which has a getValue() method you can call to obtain the cached value.
Next on lines 8 and 9 the code checks that the returned value is null, and if it is, the passed
closure is invoked, which returns the result that needs to be cached:

8 if(!entry) {
9 def entry = callable.call()

382 C H A P T E R 1 3 ■ P LU G I N S

The return value of the call to the closure is used to place a new cache entry into the cache
on line 10:

10 globalCache.put new Element(cacheKey, entry)

Finally, on line 12 the cache entry is returned regardless of whether it is the cached version:

12 return entry

With that done, let’s see how to implement the CacheTagLib that can take advantage of the
CacheService in Listing 13-24.

Listing 13-24. Adding Content-Level Caching

class CacheTagLib {
 static namespace = "cache"

 CacheService cacheService
 def text = { attrs, body ->
 def cacheKey = attrs.key
 out << cacheService.cacheOrReturn(cacheKey) {
 body()
 }
 }
}

Once again, Listing 13-24 shows how to use dependency injection to get hold of a refer-
ence to the CacheService in the CacheTagLib. The cacheOrReturn method is then used to cache
the body of the tag using the key attribute passed into the text tag. Notice how the CacheTagLib
has been placed inside a namespace, a concept you first learned about in Chapter 5.

Users of the simple-cache plugin can now take advantage of content-level caching simply
by surrounding the body of markup code they want to cache with the <cache:text> tag that the
CacheTagLib provides. Listing 13-25 shows an example of its usage.

Listing 13-25. Using the Tag Provided by the simple-cache Plugin

<cache:text key="myKey">
 This is an expensive body of text!
</cache:text>

Dynamic Spring Beans Using Conventions
In the previous section, you implemented the simple-cache plugin using an Ehcache bean
registered in the Spring ApplicationContext. What this example didn’t demonstrate, though,
is the ability to dynamically create beans on the fly using the conventions in the project.

In the “Custom Artefact Types” section, you explored how to create a plugin that identified
Quartz jobs. In a typical Spring application, you would need to use XML to configure each indi-
vidual job using the org.springframework.scheduling.quartz.JobDetailBean class. With a Grails
plugin that knows about conventions, you can do it dynamically at runtime! Listing 13-26 shows
this in action in a QuartzGrailsPlugin plugin descriptor.

C H A P T E R 1 3 ■ P L U G I N S 383

Listing 13-26. Dynamically Creating Beans at Runtime

1 import org.springframework.scheduling.quartz.*
2
3 class QuartzGrailsPlugin {
4 ...
5 def doWithSpring ={
6 application.jobClasses.each { GrailsClass job ->
7 "${job.propertyName}"(JobDetailBean) {
8 name = job.name
9 jobClass = job.getClazz()
10 }
11 }
12 ...
13 }
14 }

To better understand the code in Listing 13-26, let’s step through it. First, on line 6 the each
method is used to iterate over all the artefacts of type Job:

6 application.jobClasses.each { GrailsClass job ->

Then on line 7, a new bean is dynamically created using Groovy’s ability to invoke meth-
ods using a String (or a GString) as the method name:

7 "${job.propertyName}"(JobDetailBean) {

In this case, given the SimpleJob from Listing 13-18, you would end up with a bean called
simpleJob in the Spring ApplicationContext that is an instance of the Quartz JobDetail class.
The JobDetailBean class is a Spring-provided helper class for creating Quartz JobDetail
instances as Spring beans. Finally, on lines 8 and 9, the name of the job and the class of the
job are set using properties of the GrailsClass interface:

8 name = job.name
9 jobClass = job.getClazz()

To finish up the Quartz plugin, you could set up beans within doWithSpring for the
Scheduler, using Spring’s SchedulerFactoryBean, the triggers, and so on. However, since this
serves mainly as a demonstration of what is possible, we recommend you take a look at the
excellent existing Quartz plugin for Grails, which is installable with the following command:

$ grails install-plugin quartz

Using Metaprogramming to Enhance Behavior
In the previous section, you saw how plugins can participate in the configuration of the Spring
ApplicationContext. Now let’s look at another area that plugins typically contribute to: the
application behavior. Groovy is a fully dynamic language that allows you to completely modify
the behavior of a class at runtime through its metaprogramming APIs.

384 C H A P T E R 1 3 ■ P LU G I N S

■Tip If you’re looking for a book with significant coverage of the metaprogramming capabilities offered by
Groovy, take a look at Programming Groovy by Venkat Subramaniam (Pragmatic Programmers, 2008).

Like other dynamic languages such as Smalltalk, Ruby, and Lisp, Groovy features a Meta
Object Protocol (MOP). The key thing to remember is that it is the MOP that decides the behav-
ior of Groovy code at runtime, so code that looks as though it may do one thing at compile time
could be made to do something completely different. For each java.lang.Class that Groovy
knows about, there is an associated MetaClass. The MetaClass is what dictates how a particular
method, constructor, or property behaves at runtime.

Groovy’s MetaClass allows you to add methods, properties, constructors, and static meth-
ods to any class. For example, consider the code in Listing 13-27.

Listing 13-27. Adding New Methods to a Class

class Dog {}
Dog.metaClass.bark = { "woof!" }
assert "woof!" == new Dog().bark()

Here you have a simple class called Dog. Instances of the Dog class cannot, as it stands,
bark. However, by using the metaClass, you can create a bark method with this expression:

Dog.metaClass.bark = { "woof!" }

Clearly, this example has only brushed the surface of what is possible. If you refer to
Appendix A, you’ll find more detailed coverage of the metaprogramming APIs.

Let’s look at an example within the context of a Grails plugin by trying to add the
cacheOrReturn method to all controllers to eliminate the need to inject the service via
Spring first. Listing 13-28 demonstrates how, by simply delegating to the CacheService,
you can add a cacheOrReturn method to all controllers too.

■Tip If you prefer not to create a plugin but would still like to do metaprogramming in your Grails applica-
tion, we recommend you do so within a Bootstrap class, a topic covered in Chapter 12.

Listing 13-28. Adding Methods to All Controllers

class SimpleCacheGrailsPlugin {
 ...
 def doWithDynamicMethods = { applicationContext ->
 def cacheService = applicationContext.getBean("cacheService")
 application
 .controllerClasses
 *.metaClass
 *.cacheOrReturn = { Serializable cacheKey, Closure callable ->

C H A P T E R 1 3 ■ P L U G I N S 385

 cacheService.cacheOrReturn(cacheKey, callable)
 }
 }
}

Another important aspect to notice about the code in Listing 13-28 is the use of Groovy’s
spread dot operator *. to obtain all the metaClass instances from all the controllerClasses and
also the use of a spread assignment to create a cacheOrReturn method for each MetaClass.
That’s far easier than adding a for or each loop!

Plugin Events and Application Reloading
As well as the plugin hooks discussed in the “Plugin Hooks” section, plugins can also partici-
pate in a number of events, including application reload events. Grails aims to minimize the
number of application restarts required during development time. However, since reloading is
typically different for each artefact type, the responsibility to reload is delegated to plugins.

A plugin can essentially listen for three core events: onChange, onConfigChange, and
onShutdown. Let’s take a look at onChange first because it is the most common event dealt with
by plugins. Each individual plugin can monitor a set of resources. These are defined by a prop-
erty called watchedResources. For example, as part of Grails core, there is a plugin that provides
support for internationalization (covered in Chapter 7) through the use of message bundles
that are found in the grails-app/i18n directory. The i18n plugin defines its watchedResources
property as follows:

def watchedResources = "file:./grails-app/i18n/*.properties"

What this says is that the i18n plugin will monitor all files within the grails-app/i18n
directory ending with the file extension .properties.

■Tip If you’re wondering about the file-matching patterns the watchedResources property uses, take a
look at Spring’s org.springframework.core.io.support.PathMatchingResourcePatternResolver
class as well as the Spring Core IO package in general, which Grails uses under the covers.

Whenever one of the properties files in the grails-app/i18n directory changes, Grails will
automatically trigger the onChange event of the plugin or plugins, monitoring the file passing in
a change event object. The event object is essentially just a map containing the following
entries:

• source: The source of the event, which is either a Spring org.springframework.core.
io.Resource instance representing the file on disk or the recompiled and changed
java.lang.Class instance if the watchResources property refers to Groovy classes

• application: A reference to the GrailsApplication instance

• manager: A reference to the GrailsPluginManager instance

• ctx: A reference to the Spring ApplicationContext instance

386 C H A P T E R 1 3 ■ P LU G I N S

Typically the most important entry in the event map is the source, which contains a
reference to the source of the change. In the case of the i18n plugin, the source entry would
reference a Spring org.springframework.core.io.Resource instance since the properties files
monitored by the i18n plugin are not Groovy classes. However, if you develop a plugin where
you choose to monitor Groovy classes instead, Grails will automatically recompile the changed
class and place the altered class within the source entry in the event map.

As an example, consider the Quartz plugin discussed in previous sections. The
watchedResources definition for the Quartz plugin would look something like this:

def watchedResources = "file:./grails-app/jobs/**/*Job.groovy"

Whenever one of the Groovy files changes, Grails will recompile the class and pass you a
reference to the java.lang.Class instance representing the job. However, that is all Grails
will do. It is then up to you to make whatever changes you deem necessary to the running
application to ensure it is now in the correct state. For example, in the “Dynamic Spring
Beans Using Conventions” section, we showed you how to dynamically register new
JobDetail beans for each job class. To implement reloading correctly for the Quartz plugin,
you would need to ensure that those beans are replaced with the new class. Listing 13-29
shows a hypothetical implementation that takes the newly recompiled class and registers
new beans with the ApplicationContext.

Listing 13-29. Implementing onChange for the Quartz Plugin

1 class QuartzGrailsPlugin {
2 def watchedResources = "file:./grails-app/jobs/**/*Job.groovy"
3 ...
4
5 def onChange = { event ->
6 Class changedJob = event.source
7 GrailsClass newJobClass = application.addArtefact(changedJob)
8 def newBeans = beans {
9 "${newJobClass.propertyName}"(JobDetailBean) {
10 name = newJobClass.name
11 jobClass = newJobClass.getClazz()
12 }
13 }
14 newBeans.registerBeans(applicationContext)
15 }
16 }

Although the code is pretty short, there are quite a few new concepts to understand, so
let’s walk through those starting on line 6 where a reference to the event’s source is obtained:

6 Class changedJob = event.source

C H A P T E R 1 3 ■ P L U G I N S 387

With the source in hand, the next thing the onChange event does is register the new Class
with the GrailsApplication instance by calling the addArtefact method:

7 GrailsClass newJobClass = application.addArtefact(changedJob)

The code on line 8 is pretty interesting, because here the implicit beans method is used,
which takes a block of code that uses the BeanBuilder syntax we discussed in the “Providing
Spring Beans” section. The beans method returns a BeanBuilder instance containing the bean
definitions (but not the instantiated beans themselves):

8 def newBeans = beans {

The code on lines 8 to 13 are essentially the same as you saw in Listing 13-26; all the code
is doing is creating a new JobDetailBean bean definition from the new class. Line 14 is far more
interesting because it shows how you can use the registerBeans method of the BeanBuilder
class to register all the bean definitions defined within the BeanBuilder instance with the pro-
vided ApplicationContext:

14 newBeans.registerBeans(applicationContext)

Of course, not all plugins will need to register new beans based on an onChange event. This
is a requirement only if you registered beans in the doWithSpring closure that require reloading
behavior. It may be possible to work with the existing beans to implement effective reloading
for a plugin. For example, the i18n plugin we discussed earlier simply clears the MessageSource
cache, forcing it to be rebuilt:

def messageSource = applicationContext.getBean("messageSource")
if (messageSource instanceof ReloadableResourceBundleMessageSource) {
 messageSource.clearCache()
}

Other than the onChange event, the two other events available are onConfigChange and
onShutdown. The onConfigChange event is fired if Grails’ global configuration file found at
grails-app/conf/Config.groovy is changed by the user. In the case of the onConfigChange
event handler, the source of the change event is the altered ConfigObject. Often, plugins rely
on settings found within Config.groovy for configuration. Remember, Grails uses Conven-
tion over Configuration, which means that conventions are used to ease development, but
configuration is still possible if required. Later in this chapter we’ll show an example that
uses the Grails ConfigObject, which is obtainable using the getConfig() method of the
GrailsApplication class.

Finally, the onShutdown event is fired when the shutdown() method of the GrailsPluginManager
is called. This happens, for example, when a Grails application is undeployed from a container and
the Grails servlet’s destroy() method is invoked.

388 C H A P T E R 1 3 ■ P LU G I N S

Modifying the Generated WAR Descriptor
As discussed in Chapter 12, the web.xml file Grails uses to integrate with servlet containers is
generated programmatically. You saw in Chapter 12 that it is possible to modify the template
used to generate web.xml by using the install-templates command. However, it is also possi-
ble for plugins to modify web.xml programmatically using the doWithWebDescriptor hook.

Essentially, when the web.xml file is generated, it gets parsed into memory by Groovy’s
XmlSlurper parser. This parser creates an in-memory representation of the XML that you can
modify. The doWithWebDescriptor hook is passed a reference to the XML as the first argument
to the doWithWebDescriptor closure. XmlSlurper allows you to use a builder-like syntax to make
modifications to the XML.

As an example, one of the core Grails plugins is the URL mappings plugin, which provides
the functionality covered in Chapter 6. The way the plugin works is to provide a Servlet filter
that rewrites requests onto the main Grails servlet. To add this Servlet filter into the mix, the
doWithWebDescriptor implementation of the URL mappings plugin looks something like the code
in Listing 13-30.

Listing 13-30. Example doWithWebDescriptor That Adds a New Servlet Filter

1 def doWithWebDescriptor = { webXml ->
2 def filters = webXml.filter
3 def lastFilter = filters[filters.size()-1]
4 lastFilter + {
5 filter {
6 'filter-name'('urlMapping')
7 'filter-class'(UrlMappingsFilter.getName())
8 }
9 }
10 ...
11 }

To understand what the code in Listing 13-30 is doing, let’s take a look at it line by line.
First, on line 2, a GPath expression is used to get a list of all the existing <filter> elements con-
tained within the web.xml file:

2 def filters = webXml.filter

Then, on line 3, a reference to the last <filter> element in the list is obtained:

3 def lastFilter = filters[filters.size()-1]

As you can see from the previous two examples, using Groovy’s XML APIs is nothing like
using a Java XML parser. The XML object parsed by XmlSlurper almost feels like a first-class
object, with very little evidence that the underlying data structure is in fact XML. Finally, on

C H A P T E R 1 3 ■ P L U G I N S 389

lines 4 through 9, the overridden + operator is used to add a new <filter> element directly after
the last <filter> element:

4 lastFilter + {
5 filter {
6 'filter-name'('urlMapping')
7 'filter-class'(UrlMappingsFilter.getName())
8 }
9 }

Notice how in Groovy you can use strings for method names; for instance, you can choose
an idiomatic XML element name like <filter-name> as the name of a method. The previous
code will append the following equivalent XML snippet to the web.xml document:

<filter>
 <filter-name>urlMapping</filter-name>
 <filter-class>org.codehaus.groovy.grails.web.mapping.filter. ➥

 UrlMappingsFilter</filter-class>
</filter>

As you can see, Grails makes it pretty easy to participate in the generation of the web.xml
file. Although not a common thing to do in a plugin, it is sometimes useful when you want to
integrate legacy servlets, filters, and so on. As mentioned previously, you could have used the
grails install-templates command and modified the web.xml template directly, but this
technique allows you to create plugins that automatically do this configuration for you. Reduc-
ing configuration, as well as embracing simplicity, is very much the Grails way, and
doWithWebDescriptor is just another example of that.

Packaging and Distributing a Grails Plugin
Once you are confident that your plugin is ready for distribution, you can package it using
the grails package-plugin command. In the command window, simply type grails package-
plugin from the root of your plugin project, as shown in Listing 13-31.

Listing 13-31. Packaging a Plugin

$ grails package-plugin
...
[zip] Building zip: /Developer/grails/simple-cache/grails-simple-cache-0.1.zip

As you can see from the output in Listing 13-31, the package-plugin command generates a
zip file using the name and version number of your plugin. In this case, you’re packaging up
the simple-cache plugin you developed earlier. Figure 13-2 shows an example of the resulting
zip file.

390 C H A P T E R 1 3 ■ P LU G I N S

Figure 13-2. The simple-cache plugin’s packaged zip file

Using the steps explained earlier in this chapter in the “Plugin Installation” section, you
can now install the simple-cache plugin into other applications and make use of the tag library
and services it provides.

If you want to distribute your plugin within the Grails central repository, you first need to
obtain a plugin developer account for the Grails central Subversion (SVN) repository. You can
find the steps to do so on the Grails web site at http://grails.org/Creating+Plugins.

Once you have obtained an account, releasing your plugin is as simple as typing the fol-
lowing command:

$ grails release-plugin

The release-plugin command will prompt you for the SVN username and password that
you obtained when you set up a developer account. Grails does all the heavy lifting for you in
making sure that the appropriate resources have been published in the repository and been
tagged appropriately. The release-plugin command will also generate an updated plugin list
so that your plugin appears whenever a Grails user types the list-plugins command.

Local Plugin Repositories
If you want to take advantage of Grails’ plugin distribution and discovery mechanism on your
own local network, then you can set up a local plugin repository. Grails’ plugin repositories are
currently backed by the SVN version control system, so all you need to do is set up an SVN repos-
itory on your local network, which you can do using the svnadmin command provided by SVN:

$ svnadmin create /path/to/repo

Once your SVN repository is created, you can configure additional repositories inside the
grails-app/conf/BuildConfig.groovy file for each application or globally by creating a file in
your USER_HOME directory at the location USER_HOME/.grails/settings.groovy. Either way, you

C H A P T E R 1 3 ■ P L U G I N S 391

can then provide additional named URLs of SVN repositories used for discovery and distribu-
tion. Listing 13-32 presents an example of configuring an additional plugin repository.

Listing 13-32. Configuring Additional Plugin Repositories

grails.plugin.repos.discovery.myRepository="http://foo.bar.com"
grails.plugin.repos.distrubtion.myRepository="https://foo.bar.com"

Notice in Listing 13-28 how Grails groups repositories under discovery and distribution.
The URLs under discovery are used by the list-plugins, install-plugin, and plug-info
commands discussed in the section on “Plugin Installation” to produce the plugin list that
is presented to the user. The URLs under distribution are used by the release-plugin com-
mand, as discussed in the previous section.

By default, the release-plugin command will always try to publish to the Grails central
repository. To tell the release-plugin command to publish to one of the repositories config-
ured as in Listing 13-32, you need to add the name of the repository as an argument to the
release-plugin command. For example:

$ grails release-plugin -repository=myRepository

And with that, we’ve reached the end of this tour of the plugin system. As you can imagine,
you can take advantage of the plugin system in many different ways. In this section, we’ve
touched on some ideas for plugins such as the simple-cache plugin and the Quartz plugin,
but we think the plugin system is such a critical part of the Grails ecosystem that the lessons
learned in this chapter should be put to further use. In the next section, you’ll be applying what
you’ve learned so far to create two new plugins for the gTunes application. Along the way,
you’ll discover how Grails’ plugins can be used as both a way to extend the functionality of an
existing application and as a way to effectively modularize your codebase.

Plugins in Action
So, you’ve learned what plugins are and the basics of creating plugins. It is now time to put that
knowledge to work by developing a couple of plugins for the gTunes application. The first one
you’re going to create is a plugin that makes the album art service and tag library you devel-
oped in Chapter 8 into a reusable plugin. This is a perfect example of developing a plugin to
add functionality and enhance behavior.

Plugins to Add Behavior
To start with, run the create-plugin command to create the basis of an album-art plugin:

$ grails create-plugin album-art

392 C H A P T E R 1 3 ■ P LU G I N S

The next step is to move the AlbumArtService.groovy file and the AlbumArtTagLib.groovy
file into the newly created plugin project. Once this is done, your plugin should be structured
like Figure 13-3.

Figure 13-3. The structure of the album-art plugin

Of course, the AlbumArtService relies heavily on the Amazon web services library, so you
should move those from the application into the plugin too. Figure 13-4 shows the lib direc-
tory with the necessary JAR files in place.

Also, don’t forget to move the two tests that provide coverage for the AlbumArtService and
AlbumArtTagLib from the application into the plugin. As mentioned previously, the great thing
about plugins is that they can be developed and tested separately, which makes them useful for
larger projects with multiple developers. With the AlbumArtServiceTests and AlbumArtTagLibTests
test cases included in the album-art plugin, you can now immediately test whether your plugin is
working by running the test-app command:

$ grails test-app

C H A P T E R 1 3 ■ P L U G I N S 393

Figure 13-4. The album-art plugin’s dependencies

With the tests passing, you can add the plugin metadata to the plugin descriptor that
describes what this plugin is all about. Listing 13-33 shows the updated plugin descriptor with
the metadata provided.

Listing 13-33. Providing Metadata to the album-art Plugin

class AlbumArtGrailsPlugin {

 def version = 0.1

 def author = "Graeme Rocher"
 def authorEmail = "graeme@g2one.com"
 def title = "Album art look-up plugin"
 def description = 'A plug-in that provides facilities to look-up album art'
 ...
}

One thing to consider is that when you developed the AlbumArtService in Chapter 8, it was
designed to work in conjunction with an albumArtCache that used Ehcache provided by the
application’s grails-app/conf/spring/resources.groovy file. One solution to this would be to
update the doWithSpring of the AlbumArtGrailsPlugin descriptor, as shown in Listing 13-34.

394 C H A P T E R 1 3 ■ P LU G I N S

Listing 13-34. Providing the albumArtCache with doWithSpring

class AlbumArtGrailsPlugin {

 def version = 0.1
 ...
 def doWithSpring = {
 albumArtCache(org.springframework.cache.ehcache.EhCacheFactoryBean) {
 timeToLive = 300
 }
 }
}

However, since you previously developed a simple-cache plugin earlier in the chapter, it
makes a lot more sense to take advantage of it. To do so, let’s modify the dependsOn property on
the album-art plugin descriptor, as shown in Listing 13-35.

Listing 13-35. Using dependsOn to Depend on the simple-cache Plugin

class AlbumArtGrailsPlugin {

 def dependsOn = [simpleCache:'0.1 > *']
 ...
}

■Tip When specifying dependencies, you need to use bean conventions instead of the hyphen-separated,
lowercase name simple-cache. The reason for this Grails design decision is that a hyphen isn’t valid in a
variable name or map key in Groovy unless you put quotes around it.

To enable the ability to continue to test the album-art plugin in isolation, you can install
the simple-cache plugin into the album-art plugin using the install-plugin command from
the root of the album-art plugin directory:

$ grails install-plugin /path/to/simple-cache/grails-simple-cache-0.1.zip

When you package the album-art plugin, Grails will not include the simple-cache plugin
within the album-art zip. It is your responsibility to ensure that when you install the album-art
plugin into the target application, you install the simple-cache plugin first. If you don’t, you will
get an error because Grails will be unable to resolve the album-art plugins’ dependency on
the simple-cache plugin, unless the simple-cache plugin is available in one of the configured
repositories.

Moving on, you now need to update the album-art plugin to use the CacheService provided
by the simple-cache plugin. Listing 13-36 shows the changes made to the AlbumArtService high-
lighted in bold.

C H A P T E R 1 3 ■ P L U G I N S 395

Listing 13-36. Updating the AlbumArtService to Use the simple-cache Plugin

class AlbumArtService {
 ...
 def cacheService

 String getAlbumArt(String artist, String album) {
 ...
 def key = new AlbumArtKey(album:album, artist:artist)
 return cacheService.cacheOrReturn(key) {
 try {
 def request = new ItemSearchRequest()
 ...

 def response = client.itemSearch(request)

 // get the URL to the amazon image (if one was returned).
 return response.items[0].item[0].largeImage.URL
 }
 catch(Exception e) {
 log.error "Problem calling Amazon: ${e.message}", e
 return DEFAULT_ALBUM_ART_IMAGE
 }
 }
 ...
 }
}

The changes in Listing 13-36 will cause the tests for the AlbumArtService to fail with a
NullPointerException because the cacheService is null within the context of the test. Instead
of using a real implementation in the unit test, you can use duck typing to specify a mock
implementation using Groovy’s Map literal syntax, as shown in Listing 13-37.

Listing 13-37. Mocking the cacheService

albumArtService.cacheService = [cacheOrReturn:{key, callable-> callable() }]

Groovy allows maps, where the value of a given key is a closure, to act as if they are callable
methods. In the example in Listing 13-37, by providing a cacheOrReturn key, you are able to
mock the methods of the CacheService.

To spice things up even further, you’re going to do a bit of metaprogramming, first by add-
ing a getAlbumArt method to all controllers and second by allowing instances of the Album class
from the gTunes application to retrieve their art simply by calling a getArt() method. The first
case, in Listing 13-38, shows the necessary code, which just gets the AlbumArtService instance
and adds a method to all controllers that delegates to the AlbumArtService.

396 C H A P T E R 1 3 ■ P LU G I N S

Listing 13-38. Adding a getAlbumArt Method to All Controllers

class AlbumArtGrailsPlugin {
 ...
 def doWithDynamicMethods = { ctx ->
 def albumArtService = ctx.getBean("albumArtService")

 application.controllerClasses
 *.metaClass
 *.getAlbumArt = { String artist, String album ->
 return albumArtService.getAlbumArt(artist, album)
 }
 }
}

Adding a getArt() method to the Album class is a little trickier, because the plugin doesn’t
know anything about the Album class. So to implement this enhancement, you’ll search the
GrailsApplication instance for a domain class called Album and, if it exists, add the getArt()
method to it. Listing 13-39 shows the modifications to the doWithDynamicMethods plugin hook.

Listing 13-39. Adding a getAlbumArt Method to All Controllers

class AlbumArtGrailsPlugin {
 ...
 def doWithDynamicMethods = { ctx ->
 ...
 def albumClass = application.domainClasses.find { it.shortName == 'Album' }
 if(albumClass) {
 albumClass.metaClass.getArt ={->
 albumArtService.getAlbumArt(delegate.artist?.name,
 delegate.title)
 }
 }
 }
}

Notice how within the body of the new getArt method you can use the closure delegate to
obtain the artist and title. The delegate property of a closure, when used in this context, is
equivalent to referring to this in a regular method. With the code in Listing 13-39 in place, you
can now obtain the URL to an Album instance’s album art with the code shown in Listing 13-40.

Listing 13-40. Using the getArt() Method to Obtain Album Art

def album = Album.get(10)
println "The art for this album is at ${album.art}"

Note that, in Groovy, methods that follow bean conventions are accessible via the prop-
erty access notation, so the expression album.art is equivalent to album.getArt(). And with
that, you have completed the album-art plugin that can now be installed into any application

C H A P T E R 1 3 ■ P L U G I N S 397

that has a requirement to look up album art. The gTunes application is one such application.
However, before you can install the album-art plugin, you need to install the simple-cache plu-
gin that the album-art plugin is dependent on into the gTunes application:

$ grails install-plugin ../simple-cache/grails-simple-cache-0.1.zip

With that done, install the album-art plugin next:

$ grails install-plugin ../simple-cache/grails-album-art-0.1.zip

Now you can start up the gTunes application, and it will behave exactly as before, except it
is utilizing the album-art plugin’s functionality instead! One thing to note about the album-art
plugin is that although it provides new functionality in the form of services, tag libraries, and
new methods, it does not comprise an entire self-contained application. We’ll be looking at
how you can achieve this in the next section.

Plugins for Application Modularity
As well as making it possible to extend the available APIs within a Grails application, plugins
can also provide entire modules of application functionality. Many newcomers dismiss plugins
as purely for plugin developers who are willing to jump into the core Grails APIs, but in fact,
plugins are an extremely effective way to modularize your application. In this section, we’ll
explain how you can create an entire application as a plugin that can be installed into the
gTunes application.

To keep things simple, you’ll tackle a very commonly demonstrated application in screen-
casts and presentations around Grails: the blog. Yes, as with any self-respecting modern Web
2.0 application, the gTunes application needs a blog where the proprietors of the gTunes store
can make big announcements about new music, events, and so on. Luckily, a simple blog takes
about five minutes to implement in Grails, so it shouldn’t be too complicated.

The first step is to run the create-plugin command to create the blog plugin:

$ grails create-plugin blog

This will create the blog plugin and associated BlogGrailsPlugin descriptor. You can
populate the descriptor with some plugin metadata; Listing 13-41 shows a sample blog plugin
descriptor.

Listing 13-41. Adding Metadata to the blog Plugin

class BlogGrailsPlugin {
 def version = 0.1
 def author = "Graeme Rocher"
 def authorEmail = "graeme@g2one.com"
 def title = "A blogging plugin"
 def description = 'A plugin that provides a blog facility'
}

Now it’s time to create a domain class that models a blog post:

$ grails create-domain-class com.g2one.blog.Post

398 C H A P T E R 1 3 ■ P LU G I N S

After these two commands are complete, you should have a directory structure similar to
that pictured in Figure 13-5.

Figure 13-5. The Post domain class

Thinking about the Post domain class for a moment, it’s going to have the obvious things
like a title and a body, as well as a date posted. Putting this into practice, Listing 13-42 shows
the Post domain class containing the necessary properties.

Listing 13-42. The Post Domain Class

package com.g2one.blog

class Post {
 String title
 String body
 Date dateCreated
 Date lastUpdated

 static constraints = {
 title blank:false
 body type:"text", blank:false
 }
}

C H A P T E R 1 3 ■ P L U G I N S 399

Note that the Post domain class is using the property names dateCreated and lastUpdated to
take advantage of Grails’ auto time stamping capabilities that were first discussed in Chapter 10.
With an appropriate domain class in place, to help you get started, you can use scaffolding to
quickly generate a controller and views for the Post domain class:

$ grails generate-all com.g2one.blog.Post

For this first revision of the blog plugin, you’re going to support the creation of new entries
only; hence, you can remove the generated edit, update, and delete actions. In addition, you
need to show only the first five posts; therefore, you can use the max parameter to the static list
method of the Post class to specify that. Listing 13-43 shows the full code for the PostController.

Listing 13-43. The PostController for the blog Plugin

package com.g2one.blog

class PostController {
 def index = { redirect(action:list,params:params) }
 def allowedMethods = [save:'POST']

 def list = {
 [postList: Post.list(max:5)]
 }

 def create = {
 [post: new Post(params)]
 }

 def save = {
 def post = new Post(params)
 if(!post.hasErrors() && post.save()) {
 flash.message = "Post ${post.id} created"
 redirect(action:list)
 }
 else {
 render(view:'create',model:[post:post])
 }
 }
}

Now let’s move onto the views. In the case of the blog plugin, the list.gsp view is the most
important because it will be responsible for showing each blog entry. However, Grails’ default
scaffolding displays the list view as a table, which is not very useful in this case. You can correct
that by modifying the list.gsp view to render a _post.gsp template instead. Listing 13-44
shows the updated list.gsp code.

400 C H A P T E R 1 3 ■ P LU G I N S

Listing 13-44. The blog Plugin’s list.gsp View

<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <meta name="layout" content="${params.layout ?: 'main'}" />
 <title>Post List</title>
 </head>
 <body>

 <div class="nav">

 <g:link class="create" action="create">New Post</g:link>

 </div>
 <div class="blog">
 <h1>${grailsApplication.config.blog.title ?: 'No Title'}</h1>

 <g:render plugin="blog"
 template="post"
 var="post"
 collection="${postList?.reverse()}" />
 </div>
 </body>
</html>

There are a few key things to mention about the list.gsp view in Listing 13-44. First,
note that when using the <g:render> tag to render a template in a plugin view, you must
specify the plugin that this template belongs to; otherwise, Grails will attempt to resolve
the template within the application it is installed into. Second, take note of the usage of the
grailsApplication variable to specify the blog title:

<h1>${grailsApplication.config.blog.title ?: 'No Title'}</h1>

Here the implicit grailsApplication object is used to read a configuration setting
from the grails-app/conf/Config.groovy file. If the setting called blog.title is specified
in Config.groovy, then the view will use that. Hence, users of this plugin are able to configure
the blog to their needs. An alternative approach to doing this would be to use the <g:message>
tag, in which case the plugin user has to specify the message in the grails-app/i18n/
messages.properties file. The choice is up to you.

Finally, take note of the HTML <meta> tag that dictates what layout the list.gsp uses:

<meta name="layout" content="${params.layout ?: 'main'}" />

C H A P T E R 1 3 ■ P L U G I N S 401

What this does is if there is a layout parameter within the params object, it will use
that for the layout; otherwise, use the main layout. The main layout will, of course, resolve
to grails-app/views/layouts/main.gsp, but why the decision to allow customization via a
parameter? The idea here is that the user of the plugin can very easily customize the layout of
the blog through URL mappings. For example, consider the URL mapping in Listing 13-45.

Listing 13-45. Using a URL Mapping to Customize the blog Plugin’s Layout

"/blog"(controller:"post", action:"list") {
 layout = "funky"
}

If you add the URL mapping in Listing 13-45 to your grails-app/conf/UrlMappings.groovy
file, users can go to the /blog URL and have the list action of the PostController execute, which
in turn renders the list.gsp view. However, notice how a property called layout is set inside the
body of the closure passed to the URL mapping definition. As you learned in Chapter 6, it is
possible to pass parameters in this way. The result is that for the /blog mapping, a layout called
grails-app/views/layouts/funky.gsp will be used instead! This is a pretty powerful pattern
because it allows you to apply a different layout simply by applying a new URL mapping to the
same controller and action.

As for the _post.gsp template used in the <g:render> method of Listing 13-44, it is
pretty simple and just formats each Post instance appropriately. You can see the code for
the _post.gsp template in Listing 13-46.

Listing 13-46. The _post.gsp Template

<div id="post${post.id}" class="blogPost">
 <h2>${post.title}</h2>
 <div class="body">
 ${post.body}
 </div>

 <div class="desc">
 Posted on <g:formatDate date="${post.dateCreated}"
 format="dd MMMMMM yy" />
 </div>

</div>

And with that, you have pretty much completed the list.gsp view. Figure 13-6 shows
what the list.gsp view looks like when you run the blog plugin and head off to the list action
of the PostController.

402 C H A P T E R 1 3 ■ P LU G I N S

Figure 13-6. The list view of the blog plugin

Since the view renders each Post directly in the list.gsp view, the show.gsp view has been
made redundant and can be deleted. Also, for the first revision, you’re interesting in creating
new posts only, so edit.gsp can be deleted too—you can always add editing later!

Moving on to the create.gsp view, it too could use a little cleaning up. Also, it would be
nice to provide a rich text–editing capability for authoring the post. One of the plugins available
for Grails is the fckeditor plugin, which adds support for FCKeditor (http://www.fckeditor.
net/), a rich text–editing component. To install the fckeditor plugin into the blog plugin, run
the following command:

$ grails install-plugin fckeditor

In addition to this, you need to update the BlogGrailsPlugin descriptor and add a
dependsOn setting to ensure that when others install the blog plugin, FCKeditor is resolved
too. Listing 13-47 shows the dependsOn set appropriately.

Listing 13-47. Making the blog Plugin Depend on the fckeditor Plugin

class BlogGrailsPlugin {
 def dependsOn = [fckeditor:'0.8 > *']
 ...
}

With that done, let’s enable FCKeditor in create-gsp by using the <fck:editor> tag pro-
vided by the fckeditor plugin. Listing 13-48 shows the updated create.gsp file with the usage
of the <fck:editor> tag highlighted in bold. You will notice the logical name printed when you
ran the blog plugin with grails run-app. Grails prints out a message such as this:

Loading with installed plug-ins: ["fckeditor", "blog"]

C H A P T E R 1 3 ■ P L U G I N S 403

Listing 13-48. Using the fckeditor to Enable Rich Text Editing

<html>
 ...
 <body>
 <h1>Create Post</h1>
 <g:if test="${flash.message}">
 <div class="message">${flash.message}</div>
 </g:if>
 <g:hasErrors bean="${post}">
 <div class="errors">
 <g:renderErrors bean="${post}" as="list" />
 </div>
 </g:hasErrors>
 <g:form action="save" method="post" >
 <div class="dialog">
 <div id="titleField">
 <label for="title">Title:</label>
 <g:textField name="title"
 value="${fieldValue(bean:post,field:'title')}"/>
 </div>
 <div id="bodyField">
 <fck:editor name="body"
 width="500"
 height="300"
 toolbar="Basic">
 ${fieldValue(bean:post,field:'body')}
 </fck:editor>
 </div>
 </div>
 <div class="buttons">

 <input class="save" type="submit" value="Post" />

 </div>
 </g:form>
 </body>
</html>

Using the toolbar attribute of the <fck:editor> tag, you can specify that you want only a
simple toolbar with basic formatting options; otherwise, you’ll get a toolbar with almost as
many options as a word processor like Microsoft Word. Figure 13-7 shows the create.gsp view
with the <fck:editor> tag doing the job of rendering a rich text–editing component.

404 C H A P T E R 1 3 ■ P LU G I N S

Figure 13-7. Creating a post with FCKeditor

Of course, both the list.gsp and create.gsp pages currently look rather uninspiring, but
it is up to the application you install the blog plugin into to provide useful style information via
CSS. Speaking of installing the blog plugin into an application, it is time to do exactly that! First
package up the blog plugin by running the package-plugin command:

$ grails package-plugin

Then navigate to the gTunes application, and use install-plugin to install the blog
plugin:

$ grails install-plugin ../blog/grails-blog-0.1.zip

Note how, in this case, since the FCKeditor plugin exists in the Grails central repository,
the install-plugin command will automatically resolve the dependency. Now it would be
useful to configure the blog’s title using the grails-app/conf/Config.groovy file. Remember,
the blog.title setting allows you to customize the blog title; simply adding the following set-
ting to Config.groovy will do the trick:

// configuration for the blog
blog.title="The gTunes Weblog"

Run the gTunes application using the run-app command, and then navigate to the URL
http://localhost:8080/gTunes/post/list. Like magic, you have the blog plugin running
inside the gTunes application exactly as it was before—except that it is now taking advantage
of the gTunes application’s main layout. Clicking the “New Post” button will take you to the
create.gsp view you developed earlier. Figure 13-8 shows the FCKeditor component running
within the gTunes application.

C H A P T E R 1 3 ■ P L U G I N S 405

Figure 13-8. Creating blog posts in the gTunes application

If you type some content, including a title and body, and then hit the “Post” button, you’re
able to create new posts on the gTunes application blog, as shown in Figure 13-9.

Figure 13-9. A blog post in the gTunes application

406 C H A P T E R 1 3 ■ P LU G I N S

Clearly, this is a very basic blog plugin at the moment with no support for RSS, comments,
calendars, archives, and all that jazz. However, as a demonstration of the concept of using plu-
gins to separate your application in reusable modules, it’s a perfect example. A separate team
of developers could happily work on the blog plugin and gradually integrate its functionality
into the primary application over time. You could even create an automated build, as you
learned in Chapter 12, to build and test all your plugins and install them into your main appli-
cation for integrating testing. So, plugins are definitely worth a look, even if you don’t intend to
become an expert on Grails internals.

Summary
In this chapter, we hope you have learned the power of the Grails plugin system not just for
plugins that provide API enhancements but equally for use cases that provide fully functional
application modules like you saw in the previous section. Plugin development is a very broad
topic, and this chapter only brushed the surface of what is possible; however, this chapter has
given you enough knowledge to investigate developing your own plugins.

From the basics of creating and populating plugin metadata to the intricacies of develop-
ing the plugin itself and finally to the packaging and distribution of your plugins, this chapter
has covered a lot of ground. As you have seen, Grails provides a broad set of functionality out
of the box that can be extended without limits through its plugin system.

One thing you will have noticed during the development of the blog plugin in the previous
section is that at the moment it allows pretty much anyone to post. Clearly, this is not desirable
in the long term, so in the next chapter, we’ll cover how you can refactor the simple security
implementation in the gTunes application into one of the more fully featured security plugins
that are available. Role-based security, here we come!

407

■ ■ ■

C H A P T E R 1 4

Security

Security is a broad topic that is applicable across multiple layers of your application. From
the view layer to the database, making your application immune to the various forms of attack
is a nontrivial task. Scary things like cross-site scripting (XSS) and SQL injection attacks require
careful attention when building your application. As well as covering techniques that help
avoid such attacks, in this chapter we’ll cover how you can secure your application through
authentication and authorization.

Authentication refers to the act of establishing a client’s identity. The ubiquitous login
form is typically used to establish identity in web applications. Authorization, on the other
hand, is about granting a client specific rights (often referred to as privileges or permissions).

Of course, there is no point in reinventing the wheel, so we’ll cover how you can use one of
the security frameworks already available to implement a more generic solution for authenti-
cation and authorization.

Securing Against Attacks
Hacking Internet sites has become a challenge for not just malicious individuals but also for
security firms that research potential holes in an application’s makeup. The more media cov-
erage an application has, the more likely it is subject to such attacks. Banks and large Internet
sites are at particular risk.

When developing an application, you should pay careful attention to the security
requirements. Is it exposed to the outside world, or is it an intranet application? What are
the implications of a breach? An application with heightened security requirements will take
longer to develop and require more user acceptance testing and probing.

As for Grails, some vulnerabilities are completely beyond its control. No matter how
cautious you are, Grails won’t save you if there is a vulnerability at the operating system or
web server level. Having said that, Grails does provide you with the tools to implement appli-
cation-layer security, but ultimately it is up to you to keep security at the forefront of your
mind. Unit and functional testing can help you spot problems in this area. Your application
can be breached in many ways. In the next few sections, we’ll cover some of those ways and
how you can help avoid any issues occurring in the first place.

SQL or HQL Injection
One way to launch a Denial of Service (DoS) attack is to use SQL or HQL injection. Essentially,
if you use HQL that is built up from values obtained from request parameters, it is possible for

408 C H A P T E R 1 4 ■ S E C U R I T Y

an attacker to modify the incoming parameters to give the HQL a different meaning. This may
cause invalid data to be returned from the HQL query or, worse still, data held in the database
to be removed or changed! To illustrate the problem, consider the code in Listing 14-1.

Listing 14-1. An Action Vulnerable to HQL Injection

def search = {
 Album.findAll("from Album as a where a.title='"+ params.title +"'")
}

With the code in Listing 14-1, an attacker could pass a value as the title parameter that
could compromise the query and lead to a DoS attack. For example, say the attacker decided to
send a request parameter with the following value:

' or a.title not null

This would result in the following HQL query:

from Album as a where a.title='' or a.title not null

The result is that instead of returning only a few records, the query could return thou-
sands or millions of records, causing a potential OutOfMemoryError. Worse still, if the attacker
initiates 10,000 requests using the same parameters, you could get threads blocking while
these long-running queries execute. With no threads left in the pool, your server will become
unresponsive, and the hacker will have successfully completed a DoS attack.

Of course, this phenomenon is not specific to Grails; any application that builds HQL or
SQL up dynamically comes up against it. So, how do you prevent such an attack? The secret
is never, ever to build up queries from String values, as you saw in Listing 14-1. Instead, use
either named or ordinal parameters for the query or, even better, criteria queries. Listing 14-2
shows four possible alternatives to the query from Listing 14-1.

Listing 14-2. Alternatives That Avoid HQL Injection

// using ordinal parameters
Album.findAll("from Album as a where a.title = ?", [params.title])

// using named parameters
Album.findAll("from Album as a where a.title = :title", [title:params.title])

// using criteria
Album.withCriteria {
 eq('title', params.title)
}

// using a dynamic finder
Album.findAllByTitle(params.title)

C H A P T E R 1 4 ■ S E C U R I T Y 409

In all the examples from Listing 14-2, Hibernate will automatically deal with escaping the
values passed into the query, making it impossible to execute an HQL injection attack. In the next
section, we’ll show another potential avenue for attack that is specific to Groovy and Grails—
Groovy injection.

Groovy Injection
HQL injection vulnerabilities are dangerous for sure, but the unguarded parsing of Groovy
scripts from user input could be even more harmful. Called Groovy injection, this involves
accepting input from a user that is then executed as a Groovy script. Listing 14-3 shows an
example of this technique.

Listing 14-3. Groovy Injection

def execute = {
 new GroovyShell().evaluate(params.script)
}

Writing code like that shown in Listing 14-3 is, to be blunt, not the smartest thing to do.
Bringing the whole container down is a simple matter of sending a parameter with the follow-
ing value:

System.exit(1)

Or worse, the user could send code that modifies key system files, corrupting the operating
system. The GroovyShell class places no restrictions on what code the user is able to run.
Generally, as is the case with other dynamic languages such as Ruby and JavaScript, it is not
advisable to dynamically evaluate user input in this manner. If you really must have this func-
tionality, then you need to make sure the GroovyShell instance is set up with the appropriate
Java security permissions. The Groovy website has good documentation on how to achieve this
at http://groovy.codehaus.org/Security.

Cross-Site Scripting (XSS)
XSS attacks are probably the most well known but least understood security exploit. The tech-
nique involves injecting JavaScript written by the attacker into the page. An attacker able to
control the JavaScript on your site is an incredibly dangerous scenario. She could do all man-
ner of things, from stealing a user’s cookie to changing a login form so that it sends requests to
another server that captures usernames and passwords.

XSS attacks are amazingly common; the site xssed.com even keeps an up-to-date list of
the latest known vulnerabilities in major public sites. You’ll notice many prominent industry
names there; as you can see, even some of the most well-known companies in the software
industry make mistakes. The main reason XSS attacks are so common is that they are very hard
to test for. Automated testing in most cases is insufficient to trace every potential XSS problem.

410 C H A P T E R 1 4 ■ S E C U R I T Y

In fact, the current implementation of the gTunes application already has an XSS vulnerability
that we left in there on purpose (honest!). To reproduce it, try the following:

1. Click the “Signup now” link to load the register form.

2. Enter a valid login, password, email, and last name.

3. For the “First Name” field, enter the text <script type="text/javascript">alert
('hello')</script>.

4. Click the “Register” button.

Figure 14-1 shows the form populated with the data from these steps.

Figure 14-1. Entering malicious data into the registration form

When you click the “Register” button, you’ll see an alert box pop up with the message
“hello.” The JavaScript you entered into the “First Name” field has been executed! The gTunes
application is currently vulnerable to an XSS attack. Figure 14-2 shows an example of the mes-
sage box appearing in Firefox.

Figure 14-2. An XSS vulnerability in action

C H A P T E R 1 4 ■ S E C U R I T Y 411

But why? The reason for the vulnerability lies in the grails-app/views/user/
_welcomeMessage.gsp template. If you look at the code for the template, it has the
following snippet of HTML:

Welcome back ${session?.user?.firstName}!

Using the GSP expression syntax ${..} on the first name simply dumps out the value;
there is no HTML escaping happening here. So, what is the solution? A robust and future-
proof solution would be to make all ${..} expressions HTML escaped by default using the
grails.views.default.codec setting in grails-app/conf/Config.groovy:

grails.views.default.codec="html"

By setting the default codec Grails uses to encode data in GSP views to HTML, you can
ensure all GSP expressions are HTML escaped by default. The downside of this approach is that
if you’re using GSPs to produce any format other than HTML, such as JSON or raw text, then
this may be problematic since the setting is global. An alternative is to use the defaultCodec
page directive to enable HTML escaping on a page-by-page basis:

<%@ defaultCodec="html" %>

By inserting the previous line of code at the top of a GSP, you can enable escaping all
expressions for only the current page. Finally, you can also use the encodeAsHTML() method
provided by Grails to explicitly encode the data, as shown in Listing 14-4.

Listing 14-4. Using encodeAsHTML to HTML Escape a Value

 Welcome back
${session?.user?.firstName?.encodeAsHTML()}!

Another important thing to note is that Grails’ built-in form tags, such as <g:textField>,
automatically use the encodeAsHTML() method for you. So, you need to be concerned only when
the data is being used outside of Grails’ built-in tags.

XSS and URL Escaping
In the previous section, you saw how a user can launch an XSS exploit if you don’t correctly
encode data as HTML by calling the encodeAsHTML() method. However, when creating URLs pro-
grammatically from user input, it is equally important to URL encode the data used to make up a
link. If you’re using Grails’ built-in <g:link> tag and all the other built-in tags that use URLs, then
you don’t have to worry. Grails will ensure all the data is appropriately URL encoded.

However, if you decide to bypass the built-in tags and do your own link creation, maybe
through a tag library, then it is critical you URL escape the programmatically created links.
Listing 14-5 shows an example of a potentially vulnerable link.

Listing 14-5. A Vulnerable Link

Show Album

412 C H A P T E R 1 4 ■ S E C U R I T Y

Simply by fiddling with the title parameter in a GET request an attacker could perform an
XSS attack. To avoid this problem, you can call the encodeAsURL() method on any data to be
included in the URL. Listing 14-6 shows an example of this.

Listing 14-6. Escaping URLs

Show Album

You’ll be learning more about the encodeAsHTML() and encodeAsURL() methods in the sec-
tion “Using Dynamic Codecs.” For now, let’s stay on the topic of vulnerabilities with a further
look into DoS attacks.

Denial of Service (DoS)
You’ve already seen how HQL injection can be used to cause a DoS attack and bring your sys-
tem down. However, there are other ways you can be vulnerable to a DoS attack even if you
avoid using String concatenation to build queries. One of the most common ways is through
pagination. As you’ll recall, GORM methods like list and the dynamic finders accept parame-
ters such as offset and max that allow you to paginate through the records available in the
database. Listing 14-7 presents an example of a simple list action that does this.

Listing 14-7. Listing All Albums

def list = {
 if(!params.max) params.max = 10
 [albumList: Album.list(params)]
}

As innocent as it may seem, the code in Listing 14-7 is vulnerable to a DoS attack. The
reason is that the code doesn’t set the maximum value of the max argument. An attacker could
pass a max value of 1000000, and you could end up with a million records loading and the same
OutOfMemoryError and thread blocking issues we mentioned earlier. Ouch!

A better solution is to ensure that you constrain the value of the max parameter passed to
a query to not exceed a specific value. Listing 14-8 shows an example implementation that
ensures the max parameter can only ever reach 100.

Listing 14-8. Constraining the Maximum Value for Pagination

def list = {
 params.max = Math.min(params.max?.toInteger() ?: 0, 100)
 [albumList: Album.list(params)]
}

As you can see from the code in Listing 14-8, you can use the Math.min method to get a safe
maximum value to use when paginating data. We’re not done with potential vulnerabilities
just yet, though. In the next section, you’ll look at one that affects data binding.

C H A P T E R 1 4 ■ S E C U R I T Y 413

Batch Data Binding Vulnerability
Many web frameworks, including Grails, allow you to bind the data of incoming request
parameters to objects. In the case of Grails, these are typically domain instances. Data binding
was covered in depth in Chapter 4, but just as a reminder, with Grails it can be done with the
following constructor:

def album = new Album(params)

or alternatively using the properties property of an existing domain instance:

def album = Album.get(params.id)
album.properties = params

In many scenarios, this is not a problem, because a trusted source may be performing the
update. However, in some cases, using this technique can be undesirable. Consider, for exam-
ple, a scenario where you used a simple flag on a User domain class to signify whether the User
is an administrator:

class User {
 ...
 boolean administrator
}

Administrators have far-reaching powers over the system that only a select few are allowed
to have. To set the scene further, say you had a profile page where a user can change her pass-
word, phone number, and various personal details. Listing 14-9 shows the server-side code to
update the User instance.

Listing 14-9. Vulnerable Controller Action

def update = {
 def user = User.get(params.id)
 user.properties = params
 if(user.save()) {
 redirect(action:"profile", id:user.id)
 }
 ...
}

The form that sends the request to the update action in Listing 14-9 has fields that only the
User is allowed to edit. However, a particularly malicious individual could spoof a request so
that it sent a parameter called administrator with a value of true. The result would be the User
gaining newfound powers and, potentially, compromising your system.

In this scenario, you should make sure you are explicit about what properties can be
updated. Listing 14-10 shows a corrected version of the code in Listing 14-9 that uses the sub-
script operator on the properties property to specify which properties are subject to data
binding.

414 C H A P T E R 1 4 ■ S E C U R I T Y

Listing 14-10. Correcting the Data Binding Vulnerability

def update = {
 def user = User.get(params.id)
 user.properties['firstName', 'lastName', 'phoneNumber','password'] = params
 if(user.save()) {
 redirect(action:"profile", id:user.id)
 }
 ...
}

The key message with all these attacks is to make sure that when you accept input from the
user, you are aware of the risks of doing so. Grails provides you with all the tools necessary to
avoid attacks but will not magically save you from writing vulnerable code. So far in this chap-
ter, you’ve seen the use of encodeAsURL() and encodeAsHTML(); in the next section, we’ll cover
how these methods came about and how you can add your own custom versions.

Using Dynamic Codecs
Throughout the course of the chapter so far, you’ve seen examples of the encodeAsHTML() and
encodeAsURL() methods. These methods didn’t magically appear out of nowhere; codec classes
that ship with Grails provide them. For example, the encodeAsHTML() method is implemented
in Grails as shown in Listing 14-11.

Listing 14-11. An Example Codec Class

import org.springframework.web.util.HtmlUtils

class HTMLCodec {
 static encode(theTarget) {
 HtmlUtils.htmlEscape(theTarget?.toString())
 }

 static decode(theTarget) {
 HtmlUtils.htmlUnescape(theTarget?.toString())
 }
}

Essentially, a codec class is one that ends with the convention Codec and includes encode
and/or decode methods. Grails will automatically create encodeAsHTML() and decodeHTML() meth-
ods that delegate to the HTMLCodec class in Listing 14-11 at runtime. The interesting thing is that
you can provide your own custom codecs. For example, say you wanted to provide the ability
to encrypt data using the Blowfish encryption algorithm that is part of the Java Cryptography
Extension (JCE) provided by Sun at http://java.sun.com/javase/technologies/security/.
Thanks to custom codecs, this is pretty easy: all you need to do is create a new codec class in
the grails-app/utils directory called BlowfishCodec.groovy and populate it with the code
in Listing 14-12.

C H A P T E R 1 4 ■ S E C U R I T Y 415

Listing 14-12. A Blowfish Encryption Codec Class

import org.codehaus.groovy.grails.commons.ConfigurationHolder as CH

import java.security.*;
import javax.crypto.*;
import javax.crypto.spec.*;

class BlowfishCodec {
 static encode(target) {
 def cipher = getCipher(Cipher.ENCRYPT_MODE)
 return cipher.doFinal(target.bytes).encodeBase64()
 }

 static decode(target) {
 def cipher = getCipher(Cipher.DECRYPT_MODE)
 return new String(cipher.doFinal(target.decodeBase64()))
 }

 private static getCipher(mode) {
 def keySpec = new PBEKeySpec(getPassword())
 def cipher = Cipher.getInstance("Blowfish")
 def keyFactory = SecretKeyFactory.getInstance("Blowfish")
 cipher.init(mode, keyFactory.generateSecret(keySpec))
 }
 private static getPassword() { CH.config.secret.key.toCharArray() }
}

The BlowfishCodec implementation shown in Listing 14-12 uses the Java cryptography
APIs to construct a Cipher using a password set in grails-app/conf/Config.groovy. The
method getPassword() inspects the config object provided by importing the org.codehaus.
groovy.grails.commons.ConfigurationHolder class:

 private static getPassword() { CH.config.secret.key.toCharArray() }

The getCipher(mode) then uses the getPassword() method to construct an instance of the
javax.crypto.spec.PBEKeySpec class that is used for password-based encryption. A javax.
crypto.Cipher instance is then obtained using the Blowfish algorithm and initialized using the
appropriate mode:

private static getCipher(mode) {
 def keySpec = new PBEKeySpec(getPassword())
 def cipher = Cipher.getInstance("Blowfish")
 def keyFactory = SecretKeyFactory.getInstance("Blowfish")
 cipher.init(mode, keyFactory.generateSecret(keySpec))
}

Finally, the encode and decode closures then use the cipher to encrypt and decrypt the
necessary bytes. Notice how this codec is actually using the Base64Codec built into Grails to

416 C H A P T E R 1 4 ■ S E C U R I T Y

return the byte[] as a Base-64 encoded String. Now to encrypt data, you can simply call the
encodeAsBlowfish() method:

def encrypted = "This is some secret info".encodeAsBlowfish()

And to perform the associated decryption, you can call the decodeBlowfish() method:

def unencrypted = encrypted.decodeBlowfish()

We’ll leave to your imagination what else might be possible with codec classes. They’re
certainly a pretty powerful way to provide common encoding and decoding methods across
your application and yet another example of the use of conventions in Grails to enhance
behavior. In the next section, we’ll take a diversion into the topic of authentication and autho-
rization, including coverage of the available security plugins for Grails.

Authentication and Authorization
Application-layer security, which consists of authenticating users at login and authorizing
authenticated users to perform certain functions, is used in most nontrivial applications. In
Chapter 4, you saw how to roll your own authentication mechanism with the UserController
class, a trivial implementation that simply checks that a user exists in the database. Until now,
however, we have not explained how authorization works through roles and permissions.

As simple as it is to implement your own login mechanism, as your application grows
you’ll feel the need for more complex security rules. You could use roles to distinguish access
to parts of the system—for example, is the user an administrator or a regular user? You may
also want fine-grained permission access to individual resources. Typically, but not always, a
role consists of multiple permissions.

Rolling your own solution for all of these, potentially complex, security scenarios is rather
wasteful given the abundance of security frameworks available for Grails. Currently, three
widely used plugins offer security features to Grails:

• Acegi (Spring Security) plugin (http://www.grails.org/AcegiSecurity+Plugin):
This integrates Grails with Spring Security (http://static.springframework.org/
spring-security/site/, formerly Acegi), a security framework that is part of the
Spring portfolio of products.

• Authentication plugin (http://www.grails.org/Authentication+Plugin): The Authenti-
cation plugin is a simple security plugin that provides login and registration out of the
box. Designed to use sensible defaults to configure most aspects authentication auto-
matically, it lets you customize the behavior of the plugin via events.

• JSecurity plugin (http://www.grails.org/JSecurity+Plugin): The JSecurity plugin inte-
grates the JSecurity framework for Java (http://www.jsecurity.org/) with Grails. It
provides helpers to automatically generate login and registration functionality.

In the next section, we’ll cover filters, a feature of Grails that underpins all of these frame-
works. After that, we’ll dive headfirst into integrating the JSecurity plugin into the gTunes
application.

C H A P T E R 1 4 ■ S E C U R I T Y 417

Grails Filters
Security is one of those problems that Aspect-Oriented Programming (AOP) advocates often
point to as a prime example of a crosscutting concern. In other words, security rules often
apply to multiple URIs, classes, and even methods across an application. Getting your security
logic mixed in with your business logic is definitely undesirable. Typically, you need to autho-
rize a user to execute certain methods, which can result in security logic being mixed with
application logic.

In Grails, you can use filters to execute code before and after a controller action. To add
a set of filters in Grails, you need to create a class that ends with the convention Filters in
your application. A typical place to do this is in the grails-app/conf directory. For example,
Listing 14-13 shows a LoggingFilters implementation that logs request information before
and after each request.

Listing 14-13. An Example Filters Class

class LoggingFilters {
 static filters = {
 all(controller:"*", action:"*") {
 before = {
 log.debug "Parameters: ${params.inspect()}"
 }
 after = { model ->
 log.debug "Model: ${model?.inspect()}"
 }
 }
 }
}

As you can see from Listing 14-13, within the LoggingFilters definition you define a single
static property called filters that is assigned a block of code. Then, within the body of this
block of code, you can define one or more filters. The example in Listing 14-13 defines a single
filter called all that applies to all actions within all controllers:

all(controller:"*", action:"*") {

Notice the usage of the wildcard (*) character to signify that this filter applies to all actions
and controllers. Instead of a wildcard, you can also define a specific controller and/or action:

secure(controller:"admin", action:"*") {

Alternatively, if you prefer URI-based filters, then you can use the uri argument:

secure(uri:"/admin/**") {

In addition, the values you pass to any of the arguments, such as controller and action,
are actually just regular expressions. Hence, if you need to apply a filter to multiple controllers,
you can use regex:

secure(controller:"(admin|secure)", action:"*") {

418 C H A P T E R 1 4 ■ S E C U R I T Y

The last argument of each filter definition is a block of code that you can use to define a
before filter:

before = {
 log.debug "Parameters: ${params.inspect()}"
 }

A before filter can also return false, which signifies that the intercepted action should not
be executed, something that is critical for security plugins. As well as the before filter, there is
also an after filter:

 after = { model ->
 log.debug "Model: ${model?.inspect()}"
 }

As you can see, the after filter is a little special because it gets passed the model that the
view will use to render. Note also that the after filter gets executed before view rendering. If
you want to execute a filter after the view has rendered, you can use the afterView filter, as
shown in Listing 14-14.

Listing 14-14. Using the afterView Filter

 after = {
 request.currentTime = System.currentTimeMillis()
 }
 afterView = {
 log.debug "View took ${System.currentTimeMillis()-request.currentTime}ms"
 }

Listing 14-14 shows an example that profiles how long it takes for view rendering to com-
plete. As you can see, filters provide an excellent mechanism for implementing crosscutting
concerns, because they can be applied across multiple controllers and/or actions. For exam-
ple, Listing 14-15 shows a very trivial security filter that checks whether a user is logged in.

Listing 14-15. A Security Filter

class SecurityFilters {
 def filters = {
 loginCheck(controller:'*', action:'*') {
 before = {
 if(!session.user && actionName != 'login') {
 redirect(action:'login')
 return false
 }
 }
} } }

The security plugins available for Grails make extensive usage of its filters mechanism. In
the next section, we’ll talk about the JSecurity plugin as an example.

C H A P T E R 1 4 ■ S E C U R I T Y 419

The JSecurity Plugin
The JSecurity plugin builds on the excellent JSecurity library (http://www.jsecurity.org/) to
provide authentication and authorization to a Grails application. The JSecurity plugin works
by combining a set of one or more security filters with a security realm. The realm is the bridge
between JSecurity and Grails, and it provides methods that you can implement to facilitate
authentication and authorization. To get started with JSecurity, you have to install the plugin
by running the install-plugin command, as shown in Listing 14-16.

Listing 14-16. Running the install-plugin command

$ grails install-plugin jsecurity
...
Plugin jsecurity-0.2.1 installed
Plug-in provides the following new scripts:
--
grails create-auth-controller
grails create-db-realm
grails create-ldap-realm
grails quick-start

As you can see from the output in Listing 14-16, the JSecurity plugin provides various addi-
tional commands that help you integrate it with Grails, the details of which are listed here:

• create-auth-controller: This creates a controller that implements logging in and log-
ging out using JSecurity APIs.

• create-db-realm: If you don’t already have a domain model that represents users and
roles, this command will create one that uses GORM to store user information to the
database.

• create-ldap-realm: This creates a realm that authenticates users against a configured
LDAP server.

• quick-start: This combines the create-db-realm and create-auth-controller com-
mands to set up JSecurity in a single command.

Authentication Realms
Both the create-db-realm and create-ldap-realm classes set up a realm class that deals with
rights management. In other words, the realms dictate who can access your system, as well
as what roles and permissions they have once the user has authenticated. A realm class is a
class that lives in the grails-app/realms directory and that ends with the convention Realm.
Although there are no further requirements, for realm classes to be useful they should imple-
ment some or all of the methods shown in Listing 14-17.

420 C H A P T E R 1 4 ■ S E C U R I T Y

Listing 14-17. Methods of a Realm

def authenticate(authToken)
def hasRole(principal, roleName)
def isPermitted(principal, permission)

The authenticate method is called when a user tries to sign in to your application. The
argument passed to the authenticate method is an instance of the org.jsecurity.authc.
AuthenticationToken interface. The default implementation assumed by JSecurity is org.
jsecurity.authc.UsernamePasswordToken, which uses username/password-based authentica-
tion. However, you can change the authentication token mechanism used by setting the
authTokenClass static property of the realm class:

 static authTokenClass = org.jsecurity.authc.UsernamePasswordToken

The hasRole and isPermitted methods both accept a principal, which is the unique value
used to identify the user returned by the authenticate method. We’ll be returning to roles and
permissions in a moment; first we’ll address the notion of subjects and principals.

Subjects and Principals
A subject, in JSecurity terms, is a person or entity who is currently accessing your application.
Modeled by the class org.jsecurity.subject.Subject, a subject does not have to be logged in
and can be in one of three states:

• Unknown: The application doesn’t know who the user is.

• Remembered: The application remembers the user from a previous session.

• Authenticated: The user has successfully logged in, by entering their credentials, and the
application knows who they are.

You can obtain the current Subject instance at any time using the org.jsecurity.
SecurityUtils class, which has a static getSubject() method, as shown in Listing 14-18.

Listing 14-18. Using SecurityUtils to Obtain the Subject

def subject = org.jsecurity.SecurityUtils.getSubject()
println "User ${subject.principal} is authenticated? ${subject.authenticated}"

As shown in Listing 14-18, the Subject has a getPrincipal() method that returns the prin-
cipal. As mentioned, the principal is the unique identity of a user such as a login name, email
address, or Social Security number.

C H A P T E R 1 4 ■ S E C U R I T Y 421

Roles and Permissions
In a role-based system, a role represents a function or set of responsibilities a user may have.
If you were developing a content management system (CMS), you might have roles such as
Administrators, Editors, and Users. Although an Administrator would have overall access to all
parts of the system, lesser beings such as simple Users would be able to access only a limited
set of functions. Permissions, on the other hand, represent a much finer-grained level of con-
trol. In fact, a role typically consists of a collection of permissions. For example, considering
the gTunes application permissions might include asking the following questions:

• Can the user create blog entries?

• Can the user play music from Album X?

• Can the user upload new music to the system?

In JSecurity, a permission is modeled by the org.jsecurity.authz.Permission interface
shown in Listing 14-19.

Listing 14-19. The org.jsecurity.authz.Permission Interface

package org.jsecurity.authz

interface Permission {
 boolean implies(Permission p)
}

As you can see from Listing 14-19, the Permission interface defines a single method called
implies(Permission). The idea here is that typically a user gets assigned a collection of permis-
sions. If one of the permissions assigned to that user allows access to the Permission passed as an
argument to the implies(Permission) method, then true will be returned. As an example, to cre-
ate an Administrator user, you could use the org.jsecurity.authz.permission.AllPermission
permission, which implies access to all other permissions by always returning true from the
implies(Permission) method.

The validation of roles and permissions can and should occur at multiple levels, from
the view to the controller layer. In the next section, we’ll show how to apply these ideas to the
gTunes application by using JSecurity to secure access to various parts of the application.

JSecurity in Action
As mentioned previously, JSecurity comes with built-in commands that allow you to generate
a domain model and authentication realm. However, since you already have a domain model
and because it will help you understand the intricacies of JSecurity, you’re going to build a cus-
tom JSecurity realm class.

422 C H A P T E R 1 4 ■ S E C U R I T Y

Implementing Authentication with JSecurity

To get started, you need to create new realm class in the grails-app/realms directory. In
Figure 14-3 you can see we’ve created a new realm class called AuthRealm in the com.g2one.
gtunes package.

Figure 14-3. The AuthRealm class

The next step is to implement the authenticate method for the AuthRealm class, as shown
in Listing 14-20.

Listing 14-20. The authenticate Method of the AuthRealm

class AuthRealm {
 static authTokenClass = org.jsecurity.authc.UsernamePasswordToken

 CredentialsMatcher credentialMatcher

 def authenticate(authToken) {
 ...
 }
}

As you can see, the code uses the org.jsecurity.authc.UsernamePasswordToken class for
the authToken instance that will be passed to the authenticate method. Since there is already
an existing com.g2one.gtunes.User domain class that contains login and password properties,
the UsernamePasswordToken class is a logical choice here.

Another thing you’ll note from the code in Listing 14-20 is the credentialMatcher prop-
erty. This property is injected by Spring at runtime. The default implementation used is the
org.jsecurity.authc.credential.Sha1CredentialsMatcher, which expects that credentials
that are stored are SHA hashed, a pretty common practice.

C H A P T E R 1 4 ■ S E C U R I T Y 423

You can, however, replace the CredentialsMatcher implementation simply by defining a new
Spring bean in the grails-app/conf/spring/resources.groovy file called credentialMatcher. For
example, the following code defines a CredentialsMatcher that uses MD5 hashing instead:

credentialMatcher(org.jsecurity.authc.credential.Md5CredentialsMatcher)

Returning to the authenticate method, the UsernamePasswordToken instance defines a
username property that you can use to obtain the username of the user, as shown in Listing 14-21.

Listing 14-21. Obtaining the Username of a User

 def username = authToken.username

 // Null username is invalid
 if (username == null) {
 throw new AccountException('Null usernames are not allowed by this realm.')
 }

As you can see from Listing 14-21, if the username is null, an org.jsecurity.authc.
AccountException is thrown. JSecurity provides a number of built-in exception types within
the org.jsecurity.authc package, the examples of which are listed here:

• AccountException: Thrown because of a problem with the account under which an
authentication attempt is being executed

• ConcurrentAccessException: Thrown when an authentication attempt has been received
for an account that has already been authenticated

• DisabledAccountException: Thrown when attempting to authenticate and the corre-
sponding account has been disabled for some reason

• ExcessiveAttemptsException: Thrown when a system is configured to allow only a cer-
tain number of authentication attempts over a period of time and the current session
has failed to authenticate successfully within that number

• ExpiredCredentialsException: Thrown during the authentication process when the sys-
tem determines the submitted credentials has expired and will not allow a login

• IncorrectCredentialsException: Thrown when attempting to authenticate with creden-
tial(s) that do not match the actual credentials associated with the account principal

• UnknownAccountException: Thrown when attempting to authenticate with a principal
that doesn’t exist in the system (for example, by specifying a username that doesn’t
relate to a user account)

It is up to your implementation of the authenticate method to throw the appropriate excep-
tions for each reason, but as you can see, JSecurity provides exception types for most common
cases. For example, Listing 14-22 shows the next step needed to implement authenticate
appropriately by throwing an UnknownAccountException if the User instance is not found for the
specified username.

424 C H A P T E R 1 4 ■ S E C U R I T Y

Listing 14-22. Throwing an UnknownAccountException If a User Is Not Found

 def user = User.findByLogin(username)

 if (!user) {
 throw new UnknownAccountException("No account found for user $username")
 }

As you can see from Listing 14-22, it is at this point that you are able to connect JSecurity
with your existing domain model. However, if a User instance is found, you want to make sure
that said user’s password is correct. Listing 14-23 shows an example of how to achieve this.

Listing 14-23. Validating User Credentials

def account = new SimpleAccount(username, user.password, "gTunesRealm")
if (!credentialMatcher.doCredentialsMatch(authToken, account)) {
 throw new IncorrectCredentialsException("Invalid password for $username")
}

Notice how in Listing 14-23 you need to construct an instance of the org.jsecurity.
authc.SimpleAccount class, which takes the principal (in this case the username), the creden-
tials, and the name of the realm. Once constructed, you can then use the credentialMatcher
instance’s doCredentialsMatch method to validate the user’s authentication token. If the token
is not valid, an IncorrectCredentialsException is thrown. If all is well, the final thing to do is to
return the user’s principal:

return username

And with that, you’ve completed the implementation of the authenticate method.
Listing 14-24 shows the full code listing from the authenticate method.

Listing 14-24. The authenticate Method

 def authenticate(authToken) {
 def username = authToken.username

 // Null username is invalid
 if (username == null) {
 throw new AccountException('Null usernames are not allowed by this realm.')
 }

 // Get the user with the given username. If the user is not
 // found, then they don't have an account and we throw an
 // exception.
 def user = User.findByLogin(username)
 if (!user) {
 throw new UnknownAccountException("No account found for $username")
 }

C H A P T E R 1 4 ■ S E C U R I T Y 425

 // Now check the user's password against the hashed value stored
 // in the database.
 def account = new SimpleAccount(username, user.password, "gTunesRealm")
 if (!credentialMatcher.doCredentialsMatch(authToken, account)) {
 throw new IncorrectCredentialsException("Invalid password for $username")
 }
 return username
 }

Now all that is left to do is implement a controller that can take advantage of the realm. A
simple way to do this is to run the create-auth-controller command, which will generate a
controller that uses JSecurity to authenticate. However, since the gTunes application already
has a UserController, you’re going to modify that instead and at the same time get a chance to
explore JSecurity’s APIs.

To authenticate with JSecurity, you need a reference to the org.jsecurity.mgt.
SecurityManager instance, the interface for which is shown in Listing 14-25.

Listing 14-25. The org.jsecurity.mgt.SecurityManager Interface

interface SecurityManager {
 Subject getSubject()
 Subject login(AuthenticationToken authenticationToken)
 void logout(PrincipalCollection subjectIdentifier)
}

To obtain a reference to the SecurityManager, you need to use dependency injection via
Spring using a bean called jsecSecurityManager. If you recall, the current UserController uses
a command object, called LoginCommand, to handle login processing. Command objects can
participate in dependency injection using Spring by simply declaring a property within the
command class that matches the bean name:

 def jsecSecurityManager

Using the SecurityManager instance’s login(AuthenticationToken) method, you can then
authenticate users based on the parameters bound to the LoginCommand. Listing 14-26 shows
the updated LoginCommand class that uses the jsecSecurityManager for authentication.

Listing 14-26. A LoginCommand Definition That Uses JSecurity for Authentication

class LoginCommand {
 String login
 String password

 def jsecSecurityManager

 boolean authenticate() {
 def authToken = new UsernamePasswordToken(login, password)
 try{
 this.jsecSecurityManager.login(authToken)

426 C H A P T E R 1 4 ■ S E C U R I T Y

 return true
 }
 catch (AuthenticationException ex){
 return false
 }
 }
 static constraints = {
 login blank:false, validator:{ val, cmd ->
 if(!cmd.authenticate())
 return "user.invalid.login"
 }
 password blank:false
 }
}

You can see the guts of the logic in the authenticate() method of the LoginCommand
in Listing 14-26. Initially, a new UsernamePasswordToken instance is constructed and passed
to the jsecSecurityManager bean’s login(AuthenticationToken) method. If the login
(AuthenticationToken) method completes without an exception being thrown, the
authenticate() method returns true, signaling a successful login. Otherwise, if an exception
is thrown, false is returned. The other major change to the LoginCommand is that the login
constraint now calls the command’s authenticate() method and returns a code called
user.invalid.login if authentication failed.

You could write code to handle specific AuthenticationException instances, such as
UnknownAccountException, and return different error codes based on each exception. Never-
theless, the code serves to demonstrate how to use a command object to authenticate via
JSecurity. As for the login action of the UserController, it doesn’t need any changes since the
command object itself encapsulates the logic of logging in.

However, what does need a change is the register action. This currently stores passwords in
plain-text form, but JSecurity is expecting an SHA1 hash of the password by default. Listing 14-27
shows the changes made to the register action to provide an SHA1 hash of the password.

Listing 14-27. Hashing a Password with SHA1

import org.jsecurity.crypto.hash.Sha1Hash

class UserController {
 ...
 def register = {
 if(request.method == 'POST') {
 ...
 if(u.validate()) {
 u.password = new Sha1Hash(u.password).toHex()
 u.save()
 ...

C H A P T E R 1 4 ■ S E C U R I T Y 427

 }
 ...
 }
 }
 ...
}

Securing Your Site with JSecurity Filters

Adding the ability to authenticate users wouldn’t be of much use if you didn’t have the ability
to secure areas of a Grails application that require authentication. The JSecurity plugin for
Grails uses the filters mechanism discussed earlier in the chapter in order to authenticate
users. To begin with, you need to define a filters class. For example, you could create an
AuthFilters class, as shown in Figure 14-4.

Figure 14-4. The grails-app/conf/com/g2one/tunes/AuthFilters.groovy file

With the filters class in place, you need to define a static filters property that is assigned
a block of code, the body of which will contain the filter definitions. Listing 14-28 shows the
AuthFilters class with the filters static property in place.

Listing 14-28. The AuthFilters Class

package com.g2one.gtunes

class AuthFilters {
 static filters = {
 ...
 }
}

428 C H A P T E R 1 4 ■ S E C U R I T Y

By default JSecurity allows all requests through without authentication, so you need to
define which controllers, actions, and/or URIs require authentication. You can do so by calling
the accessControl method within the definition of a before filter. For example, users are required
to log in to purchase music, so you need to secure the buy action of the StoreController, as
shown in Listing 14-29.

Listing 14-29. Securing an Action

static filters = {
 purchasing(controller:"store", action:"buy") {
 before = {
 accessControl()
 }
 }
 ...
}

To deal with authentication failures that arise from a filters class, you need to implement
the onNotAuthenticated(Subject, controller) method. Listing 14-30 shows the implementa-
tion used by the gTunes application.

Listing 14-30. Implementing the onNotAuthenticated Method

def onNotAuthenticated(subject, d) {
 if (d.request.xhr) {
 d.render(template:"/user/loginForm", model:[message:"user.not.logged.in"])
 }
 else {
 // Redirect to login page.
 d.flash.message = "user.not.logged.in"
 if(d.actionName == 'buy') {
 d.redirect(controller:"album", action:"display", id:d.params.id)
 }
 else {
 d.redirect(controller:"store", action:"shop")
 }
 }
}

The logic here is a bit more convoluted because it deals both with Ajax requests, by checking
the request.xhr property, and with regular requests. Additionally, if the actionName is the buy
action, then there is some logic in there to take the user back to the Album they were trying to buy.
You could, of course, redirect to the original URI using the forwardURI property, but since there isn’t
a use case yet for this in the gTunes application, the implementation in Listing 14-30 will do fine.

If you need to secure access for a specific role, you can pass a block to the accessControl
method that contains a call to the method role(name) that defines the role. For example, the

C H A P T E R 1 4 ■ S E C U R I T Y 429

blogging feature you added via a plugin in Chapter 13 can be secured so that only administra-
tors can access the feature using the following syntax:

blogEditing(controller:"blog", action:"(create|save)") {
 before = {
 accessControl {
 role('ADMINISTRATOR')
 }
 }
}

Notice how the previous filter applies to both the create and save actions of the
BlogController. Currently the role(name) method is being called to allow access to a
role named ADMINISTRATOR, but if you wanted to allow access to more than one role, you
can use the | operator:

 accessControl {
 role('ADMINISTRATOR') | role('EDITOR')
 }

Here users who are in either the ADMINISTRATOR role or the EDITOR role can create blog
posts. Of course, you have not yet implemented the hasRole method in the AuthRealm class,
so no one at this point has access to these areas of the gTunes site. In the next section, you’ll
rectify that by implementing role-based security.

Implementing Role-Based Security

Currently, the gTunes domain model does not define the concept of a role. To correct this, you
need to create a new domain class called Role using the create-domain-class command:

$ grails create-domain-class com.g2one.gtunes.Role

Once complete, you’ll end up with a new domain class in the grails-app/domain/com/
g2one/gtunes directory called Role.groovy. A good way to implement a role is using a type-safe
enum. Listing 14-31 shows the code for the Role class that uses an enum called RoleName contain-
ing the different role names.

Listing 14-31. The Role Domain Class

package com.g2one.gtunes

class Role implements Serializable {
 RoleName name
}
enum RoleName {
 USER, EDITOR, ADMINISTRATOR
}

430 C H A P T E R 1 4 ■ S E C U R I T Y

The next step is to update the com.g2one.gtunes.User domain class to associate a user with
a set of roles. Listing 14-32 shows the changes to the User domain class with the addition of a
roles association.

Listing 14-32. Adding a roles Association to the User Domain Class

class User implements Serializable{
 ...
 static hasMany = [purchasedAlbums:Album,
 purchasedSongs:Song,
 roles:Role]
}

In addition, users who register with the gTunes site should be assigned the default role of
USER. To achieve this, you can update the register action, as shown in Listing 14-33, to call the
addToRoles method, passing the RoleName as an argument.

Listing 14-33. Updating the register Action to Include Roles

 def register = {
 ...
 if(u.validate()) {
 u.password = new Sha1Hash(u.password).toHex()
 u.addToRoles(name:RoleName.USER)
 u.save()
 ...
 }
 ...
 }

Now it is time to consider the AuthRealm, which currently does not implement the hasRole
method. Listing 14-34 shows a simple implementation that inspects the roles association of
the User domain class.

Listing 14-34. Using Criteria to Query User Roles

def hasRole(principal, roleName) {
 def user = User.findByLogin(principal, [fetch:[roles:'join']])
 return user.roles.any { it.name == RoleName.valueOf(roleName) }
}

Notice how in Listing 14-34 you use the principal argument passed to the hasRole
method to look up the User based on their unique login name. If the User doesn’t have a Role
within its roles association that matches the specified RoleName, then the hasRole method
will return false. With this in place, the controller actions secured with the accessControl
method in the AuthFilters class will not allow users to access those controller actions unless
the User has the specified role.

C H A P T E R 1 4 ■ S E C U R I T Y 431

Securing the View

In addition to securing via the AuthFilters class, you can also secure the view layer using a
variety of tags provided by the JSecurity plugin. You may recall that previously the gTunes
application checked whether a User existed within the session object to control the state of the
view. As a refresher, the code in question can be found within the grails-app/views/layouts/
main.gsp layout, as shown in Listing 14-35.

Listing 14-35. The Old Way of Securing the View

 <div id="loginBox" class="loginBox">
 <g:if test="${session?.user}">
 <g:render template="/user/welcomeMessage"></g:render>
 </g:if>
 <g:else>
 <g:render template="/user/loginForm"></g:render>
 </g:else>
 </div>

In the example in Listing 14-35, the loginBox <div> displays different content depending
on whether the user is logged in. Using JSecurity, there are two equivalents tags to achieve this:
<jsec:isLoggedIn> and <jsec:isNotLoggedIn>. Listing 14-36 shows the code updated to use
the JSecurity model.

Listing 14-36. Checking Whether a User Is Authenticated with JSecurity

<div id="loginBox" class="loginBox">
 <jsec:isLoggedIn>
 <g:render template="/user/welcomeMessage"></g:render>
 </jsec:isLoggedIn>
 <jsec:isNotLoggedIn>
 <g:render template="/user/loginForm"></g:render>
 </jsec:isNotLoggedIn>
</div>

■Tip If you’re not keen on the naming of the <jsec:isLoggedIn> and <jsec:isNotLoggedIn> tags, you
may want to use <jsec:authenticated> and <jsec:notAuthenticated>, which mean the same thing.

Additionally, the grails-app/views/user/_welcomeMessage.gsp template was particularly
reliant on the existence of a user object within the session with the following snippet of code:

Welcome back ${session?.user?.firstName}!

432 C H A P T E R 1 4 ■ S E C U R I T Y

If you merely want to output the currently logged in user’s login name, then you could use
the <jsec:principal /> tag instead:

Welcome back <jsec:principal />!

However, in this case, you really want to print the user’s first name. To facilitate this, you
may want to add another filter that makes the actual User instance available to the request, as
shown in Listing 14-37.

Listing 14-37. Making the User Object Available in the Request

userInRequest(controller:"*", action:"*") {
 before = {
 def subject = SecurityUtils.getSubject()
 if(subject && subject?.principal) {
 request.user = User.findByLogin(subject.principal)
 }
 }
}

As you can see from Listing 14-37, you can use the SecurityUtils class to get a reference
to the Subject and then, using the principal, look up the User instance and place it within the
request. As you saw in Chapter 10, with a good caching policy in place, you can avoid hitting
the database in most cases. Now within the _welcomeMessage.gsp template you can use the
user object held in the request to output the User instance’s firstName property:

Welcome back ${request?.user?.firstName}!

Returning to roles, as well as the <jsec:isLoggedIn> tag, you can also check whether a User
has a particular Role within the view using the <jsec:hasRole> or <jsec:hasAllRoles> tag.
Listing 14-38 shows an example of using the <jsec:hasRole> tag.

Listing 14-38. Restricting Access Based on Role

<jsec:hasRole name="ADMINISTRATOR">
 <g:link controller="blog" action="create">Create Blog Entry</g:link>
</jsec:hasRole>
<jsec:hasRole in="['ADMINISTRATOR', 'USER']">
 <g:link controller="blog" action="list">Show Blog Entries</g:link>
</jsec:hasRole>

Now it is time to try something a little more fun. In the next section, you’re going to imple-
ment the “My Music” section of the gTunes application that will allow you to play the music
you have purchased. Of course, this has to be dealt with in a secure manner, because users
should be able to play only the music they have actually purchased. Luckily, JSecurity has great
support for implementing permission-based security, which will help solve this problem.

C H A P T E R 1 4 ■ S E C U R I T Y 433

Implementing the “My Music” Section with Permissions

As it stands at the moment, the gTunes application is capable of allowing users to purchase
albums. However, there is currently no way to play the music the User has purchased, which is
not particularly useful. To fix this problem, you’re going to implement the “My Music” section,
which will show the currently logged in user’s collection of music and allow them to play indi-
vidual songs.

To do so, first create a link to the “My Music” section by editing the grails-app/views/
layouts/main.gsp layout and modifying the navButtons <div>, as shown in Listing 14-39.

Listing 14-39. Adding the “My Music” Link

<div id="navPane">
 <div id="navButtons" style="display:${request.user? 'block' :'none'}">

 <g:link controller="user" action="music">My Music</g:link>
 <g:link controller="store" action="shop">The Store</g:link>

 </div>
 ...
</div>

The added <g:link> tag links to a new music action of the UserController. The music action
is responsible for building up a model representing the user’s library of music. Listing 14-40
shows an example implementation.

Listing 14-40. Obtaining Information About the User’s Music Collection

def music = {
 def albumList = AlbumPayment.withCriteria {
 projections {
 property "album"
 }
 eq("user", request.user)
 }

 def artistList = albumList.collect { it.artist }.unique()
 return [artists:artistList, albums:albumList]
}

As you can see, you can obtain information about the user’s purchases using the
AlbumPayment class. In Listing 14-40, a projection is used to select the album property of
each AlbumPayment instance in the criteria query. Projections were discussed in more detail
in Chapter 10. With a list of albums and artists in hand, you can then use a view to render this
information appropriately. Listing 14-41 shows the grails-app/views/user/music.gsp view
that goes through each Artist instance and displays an album art link to each album.

434 C H A P T E R 1 4 ■ S E C U R I T Y

Listing 14-41. The music.gsp View

<g:applyLayout name="libraryLayout">
 <div id="musicLibrary" class="musicLibrary">
 <g:if test="${!artists}">
 You haven't purchased any music just yet.
 Why don't you take a <g:link controller="store"
 action="shop">look at the store</g:link>
 to see what's available.
 </g:if>
 <g:each var="artist" in="${artists}">
 <div id="artist${artist.id}" class="artist">
 <h2>${artist.name}</h2>
 <g:each var="album"
 in="${albums.findAll { it.artist.name == artist.name}}">

 <g:remoteLink update="musicLibrary"
 controller="album"
 action="display"
 id="${album.id}">
 <music:albumArt artist="${artist.name}"
 album="${album.title}"
 alt="${album.title}"/>
 </g:remoteLink>

 </g:each>
 </div>
 </g:each>
 </div>
</g:applyLayout>

Notice that in Listing 14-41 the music.gsp view is using a new layout called libraryLayout.
This makes sense, since typically you don’t want the same information about the store within
your music library. You can see the grails-app/views/layouts/libraryLayout.gsp file in
Listing 14-42.

Listing 14-42. The libraryLayout.gsp View

<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <meta name="layout" content="main">
 <title>gTunes Store</title>
 </head>

C H A P T E R 1 4 ■ S E C U R I T Y 435

 <body id="body">
 <h1>Your Music</h1>
 <div id="musicPanel">
 <g:layoutBody />
 </div>
 </body>

</html>

Currently, the libraryLayout.gsp view in Listing 14-42 is pretty simple, but you could eas-
ily augment it with additional functionality such as recommendations based on the user’s
current collection of music, and so on. All in all, after applying a few CSS tweaks, the new “My
Music” section looks like Figure 14-5.

Figure 14-5. The “My Music” section of the gTunes application

Next, since this section of the gTunes application relates specifically to personal data of
individual users, you need to ensure that said users are logged in before accessing the music
action of the SongController. To do this, add a new filter definition in the AuthFilters class
that secures the music action, as shown in Listing 14-43.

Listing 14-43. Securing the music Action

library(controller:"user", action:"music") {
 before = {
 accessControl()
 }
}

If you refer to the code in Listing 14-41, you’ll notice that the <g:remoteLink> tag used links
to the display action of the AlbumController. Currently, this will just render an Album exactly as
shown in the store. Figure 14-6 shows an example of the current behavior.

436 C H A P T E R 1 4 ■ S E C U R I T Y

Figure 14-6. The current presentation of Album information

As you can see, even if you purchased the Album, the gTunes application is still showing the
price, the “Buy” button, and so on. Somehow you need to give the user permission to access
this Album. It is in use cases like this that JSecurity’s permissions mechanism comes in handy.
To model permissions, you’re going to need to create a new com.g2one.gtunes.Permission
class using the create-domain-class command:

$ grails create-domain-class com.g2one.gtunes.Permission

The Permission domain class is going to implement the org.jsecurity.authz.Permission
interface, providing some default behavior. Listing 14-44 shows the code for the Permission
domain class.

Listing 14-44. The Permission Domain Class

package com.g2one.gtunes

class Permission implements org.jsecurity.authz.Permission, Serializable{

 static belongsTo = [user:User]

 boolean implies(org.jsecurity.authz.Permission p) { false }
}

As you can see from Listing 14-44, the Permission domain class is also associated with an
individual User using a belongsTo static property. To make this a bidirectional relationship, you
can add a hasMany definition on the User side of the association, as shown in Listing 14-45.

C H A P T E R 1 4 ■ S E C U R I T Y 437

Listing 14-45. Updating the User Class with the Permissions Association

class User implements Serializable{
 ...
 static hasMany = [purchasedAlbums:Album,
 purchasedSongs:Song,
 roles:Role,
 permissions:Permission]
}

Returning to Listing 14-44, the default behavior is to return false from the implies
(Permission) method, granting the User no additional permissions. To provide additional
behavior, you can subclass the Permission domain class. As an example, currently you need
to restrict the access users have to Album instances they have purchased. To do this, you can
implement an AlbumPermission by extending the Permission class. Simply run the create-
domain-class command again to create the AlbumPermission class:

grails create-domain-class com.g2one.gtunes.AlbumPermission

With that done, you need to extend the com.g2one.gtunes.Permission class and add the
necessary behavior to restrict access to individual Album instances. Listing 14-46 shows a sam-
ple implementation.

Listing 14-46. The AlbumPermission Class

package com.g2one.gtunes

class AlbumPermission extends Permission {
 Album album

 boolean implies(org.jsecurity.authz.Permission p) {
 if(p instanceof AlbumPermission) {
 if(album.id == p.album?.id) {
 return true
 }
 }
 return false
 }

 String toString() { "Album Permission: ${album}"}
}

As you can see from Listing 14-46, each AlbumPermission is associated with an Album
instance. If the Permission supplied to the implies(Permission) method contains the same
Album instance, then the User has permission to access the Album and true is returned; other-
wise, false is returned.

To finalize permission handling, you need to add code to the purchaseAlbum method of the
StoreService you created in Chapter 11 to associate an AlbumPermission with a User when they

438 C H A P T E R 1 4 ■ S E C U R I T Y

purchase an Album. Listing 14-47 shows how you can use the addToPermissions method to
achieve this in the StoreService class.

Listing 14-47. Assigning an AlbumPermission to a User

class StoreService {

 static transactional = true

 Payment purchaseAlbums(User user, creditCard, List albumPayments) {
 // Once payment taken update user profile
 for(ap in albumPayments) {
 ...
 user.addToPurchasedAlbums(ap.album)
 user.addToPermissions(new AlbumPermission(album:ap.album))
 }
 ...
 }

At this point, you need to consider the AuthRealm, which currently implements the hasRole
method, but not the isPermitted method that is necessary for permission handling. Listing 14-48
shows an example implementation that obtains a list of Permission instances for a User and ver-
ifies them against the supplied Permission instance.

Listing 14-48. Implementing isPermitted in the AuthRealm Class

def isPermitted(principal, requiredPermission) {
 if(requiredPermission instanceof com.g2one.gtunes.Permission) {
 def permissions = Permission.withCriteria {
 user {
 eq('login', principal)
 }
 }
 return permissions.any { permission ->
 permission.implies(requiredPermission)
 }
 }
 else {
 return true
 }
}

Notice, in Listing 14-48, the usage of the any method on the list of permissions. The any
method will return true if any of the expressions within the passed closure evaluate to true.
The result is that if any of the Permission instances return true from the implies(Permission)
method, then the any method will return true.

Now it is time to return to the grails-app/views/album/_album.gsp template that is cur-
rently showing the price and insisting users purchase the Album again, even if they have already

C H A P T E R 1 4 ■ S E C U R I T Y 439

purchased it. To resolve this situation, you can create a new permission variable using the
AlbumPermission class with the <g:set> tag:

<g:set var="permission"
 value="${new com.g2one.gtunes.AlbumPermission(album:album)}" />

Then you can use the <jsec:lacksPermission> tag to display information only if the user
doesn’t have permission to access the Album. For example, the price shouldn’t be shown if the
user has already purchased the Album, as shown in Listing 14-49.

Listing 14-49. Using the <jsec:lacksPermission> Tag to Restrict Access

<div class="albumInfo">
 Genre: ${album.genre ?: 'Other'}

 Year: ${album.year}

 <jsec:lacksPermission permission="${permission}">
 Price: $ ${album.price}
 </jsec:lacksPermission>
</div>

You can also at this point supply a link that allows the user to play an individual Song
if they have purchased the Album using a combination of the <jsec:lacksPermission> and
<jsec:hasPermission> tags, as shown in Listing 14-50.

Listing 14-50. Using the <jsec:hasPermission> Tag to Allow Access

<g:each in="${album.songs}" var="song">

 <jsec:lacksPermission permission="${permission}">
 ${song.title}
 </jsec:lacksPermission>
 <jsec:hasPermission permission="${permission}">
 <g:link controller="song" action="play"
 id="${song.id}">${song.title}</g:link>
 </jsec:hasPermission>

</g:each>

As you can see from Listing 14-50, the code links to the play action of the SongController.
We’ll talk about implementing this action in a moment; for now, the last step in updating the
_album.gsp template is to disable the “Buy” button if the user has already purchased the Album,
as shown in Listing 14-51.

Listing 14-51. Disabling the “Buy” Button

<div id="buttons" style="float:right;">
 <jsec:hasPermission permission="${permission}">
 <g:link controller="user" action="music">Back to My Music</g:link>
 </jsec:hasPermission>

440 C H A P T E R 1 4 ■ S E C U R I T Y

 <jsec:lacksPermission permission="${permission}">
 <g:link controller="store" action="buy" id="${album.id}">
 <img src="${createLinkTo(dir:'images',file:'buy-button.gif')}"
 border="0">
 </g:link>
 </jsec:lacksPermission>
</div>

You’ll notice from the GSP code in Listing 14-51 that if the User does have access to the
Album, then a “Back to My Music” link is displayed instead, allowing the user to navigate easily
back to their music. Figure 14-7 shows the updated interface in place with the AlbumPermission
class having the desired effect.

Figure 14-7. The updated _album.gsp template with permissions working

At this point, you need to consider how to enable users to play music they have purchased.
You could leverage various technologies that allow the streaming of media. From Windows
Media Player to Flash, each has its own advantages and disadvantages. For the gTunes applica-
tion, the powers that be have decided on QuickTime (http://www.apple.com/quicktime/) as
the preferred technology, since it works well on most mainstream platforms (even on Unix-
flavors via WINE; see http://appdb.winehq.org/appview.php?appId=1029) and is simple to use.

To allow embedding of QuickTime audio easily, it would be good to wrap the functionality
of QuickTime into a tag library. To do so, run the grails create-tag-lib command as follows:

$ grails create-tag-lib com.g2one.gtunes.Streaming

C H A P T E R 1 4 ■ S E C U R I T Y 441

This will create a new tag library called StreamingTagLib.groovy at the location grails-app/
com/g2one/gtunes, as shown in Figure 14-8.

Figure 14-8. The StreamingTagLib.groovy file

We chose a generic name on purpose, just in case the requirement to add support for other
media players, such as Flash, arises. Nevertheless, Listing 14-52 shows the code that embeds a
QuickTime movie using the StreamingTagLib.

Listing 14-52. The StreamingTagLib Implementation

package com.g2one.gtunes

class StreamingTagLib {

 static namespace = "media"

 def player = { attrs, body ->
 def userAgent = request.getHeader('User-Agent')
 def src = attrs.src
 def width = attrs.width ?: 100
 def height = attrs.height ?: 100
 def autoplay = attrs.autoplay ?: false
 out.write """
<OBJECT CLASSID=\"clsid:02BF25D5-8C17-4B23-BC80-D3488ABDDC6B\"
 WIDTH=\"${width}\"
 HEIGHT=\"${height}\"
 CODEBASE=\"http://www.apple.com/qtactivex/qtplugin.cab\">

442 C H A P T E R 1 4 ■ S E C U R I T Y

<PARAM name=\"SRC\" VALUE=\"${src}\">
<PARAM name=\"AUTOPLAY\" VALUE=\"${autoplay}\">
<EMBED SRC=\"${src}\"
 WIDTH=\"${width}\"
 HEIGHT=\"${height}\"
 AUTOPLAY=\"${autoplay}\"
 CONTROLLER=\"true\"
 LOOP=\"false\"
 PLUGINSPAGE=\"http://www.apple.com/quicktime/download/\">
</EMBED>
</OBJECT>"""
 }
}

There are a couple of interesting things to note about the code in Listing 14-52. First,
as you can see, the media namespace is used for this tag library, making the name of the tag
<media:player>.

Second, notice the usage of Groovy multiline Strings to easily write out a bunch of
markup. If you wanted, you could refactor this out to a separate GSP template, but for now
this simple solution will do. Now let’s take advantage of the <media:player> tag by implement-
ing the play action of the SongController.

Of course, you don’t want users who don’t have permission to be able to play a Song from
an Album they have purchased. Luckily, using the ability to call tags as methods in Grails, you
can use the same <jsec:hasPermission> and <jsec:lacksPermission> tags in a controller.
Listing 14-53 shows this in action.

Listing 14-53. The play Action of the SongController

def play = {
 def song = Song.get(params.id)
 if(song) {
 def albumPermission = new AlbumPermission(album:song.album)
 jsec.hasPermission(permission:albumPermission) {
 render(view:"play", model:[song:song])
 }
 jsec.lacksPermission(permission:albumPermission) {
 response.sendError 401
 }
 }
 else {
 response.sendError 404
 }
}

C H A P T E R 1 4 ■ S E C U R I T Y 443

As demonstrated by Listing 14-53, you can construct an instance of the AlbumPermission
class and then use it as an argument to the jsec.hasPermission method. The closure, which is
equivalent to the tag body in GSP, will be invoked only if the user has permission. In the case
where the User lacks permission, an HTTP 401 error is sent back signaling that the User is for-
bidden from accessing this resource.

Otherwise, if all is well, a new view called grails-app/views/song/play.gsp is rendered.
Listing 14-54 shows the GSP markup for the play.gsp view, which takes advantage of the
<media:player> tag you developed earlier.

Listing 14-54. The play.gsp View

<g:applyLayout name="libraryLayout">
 <div id="musicLibrary" class="musicLibrary">
 <div class="songPlayer">
 <h2>${song.artist.name} - ${song.title}</h2>
 <div class="albumArt">
 <music:albumArt artist="${song.artist.name}"
 album="${song.album.title}" />
 </div>
 <div class="player">
 <media:player src="${createLink(controller:'song',
 action:'stream',
 id:song.id)}"
 autoplay="true"
 height="20"
 width="200" />
 </div>
 <div class="links" style="float:right;">
 <g:remoteLink controller="album"
 action="display"
 id="${song.album.id}"
 update="musicLibrary">
 Back to Album
 </g:remoteLink>

 <g:link controller="user"
 action="music">
 Back to My Music
 </g:link>

 </div>
 </div>
 </div>
</g:applyLayout>

444 C H A P T E R 1 4 ■ S E C U R I T Y

You’ll notice from the code in Listing 14-54 that the src attribute of the <media:player> tag
is another action called stream. The stream action is responsible for sending back the music
file. Of course, at the moment, there isn’t any music! To rectify that, add a new file property to
the Song domain class, as shown in Listing 14-55.

Listing 14-55. Adding a file Property to the Song Class

class Song implements Serializable {

 String file
 ...
 static constraints = {
 ...
 file validator:{ val ->
 if(!new File(val).exists())
 return "song.does.not.exist"
 }
 }
}

As you can see, the file property uses a custom validator that ensures you can’t add a Song
that doesn’t exist on the file system. Now all you need to do is stream the data from the file back
to the User. Listing 14-56 shows an example implementation that uses Java I/O techniques.

Listing 14-56. Implementing the stream Action

1 static final BUFFER_SIZE = 2048
2 def stream = {
3 def song = Song.get(params.id)
4 if(song) {
5 def albumPermission = new AlbumPermission(album:song.album)
6 jsec.hasPermission(permission:albumPermission) {
7 try {
8 def file = new File(song.file)
9 def type = file.name[-3..-1]
10 response.contentType = "audio/x-${type}"
11 def out = response.outputStream
12 def bytes = new byte[BUFFER_SIZE]
13 file.withInputStream { inp ->
14 while(inp.read(bytes) != -1) {
15 out.write(bytes)
16 out.flush()
17 }
18 }
19 }

C H A P T E R 1 4 ■ S E C U R I T Y 445

20 catch(Exception e) {
21 log.error "Error streaming song $file: $e.message", e
22 response.sendError 500
23 }
24
25 }
26 jsec.lacksPermission(permission:albumPermission) {
27 response.sendError 401
28 }
29 }
30 else {
31 response.sendError 404
32 }
33 }

Notice that in Listing 14-56, the code once again secures access to the Song using the
AlbumPermission you created earlier and the <jsec:hasPermission> and <jsec:lacksPermission>
tags. If the User does have permission, then a new java.io.File is created, and the response
contentType is set based on the file extension on lines 8 to 10:

8 def file = new File(song.file)
9 def type = file.name[-3..-1]
10 response.contentType = "audio/x-${type}"

■Note The technique of using the file extension to produce the MIME type for the contentType works for
MP3 and M4A formats but may be a little naive if the application later needs to support other formats like WMA
and so on.

With that done, the next step is to obtain the java.io.OutputStream to write to and from
the response and create a buffer to read bytes from the file with the following:

11 def out = response.outputStream
12 def bytes = new byte[BUFFER_SIZE]

A trivial way to read the bytes of the File would be to call the readBytes() method. How-
ever, this reads the entire contents of the File into memory and, since audio files are quite
large, may not scale too well.

■Note Speaking of scaling, a better solution may be to use something like Amazon’s Simple Storage Ser-
vice (S3) to serve the files from the cloud instead. You can find an Amazon S3 plugin for Grails that can help
simplify this task at http://grails.org/Amazon+S3+Plugin.

446 C H A P T E R 1 4 ■ S E C U R I T Y

Instead, the code in Listing 14-56 uses a 2KB buffer to read and stream parts of the file back
to the User on lines 13 to 18:

13 file.withInputStream { inp ->
14 while(inp.read(bytes) != -1) {
15 out.write(bytes)
16 out.flush()
17 }
18 }

And with that, you’ve completed the “My Music” section of the gTunes application and
allowed users to securely stream the music they have purchased! Figure 14-9 shows the inter-
face that allows users to play their music.

Figure 14-9. Streaming music with QuickTime

In the next section, you’ll learn how having a better understanding of your URL mappings
will enable you to keep an eye on how users can access your application.

Limiting Access Through URL Mappings
A good technique to adopt when considering securing your application is to have greater control
over the way URLs map onto controllers. The default URL mapping scheme that Grails uses is
dynamic in that the parameters in the URI dictate what action is executed (see Listing 14-57).

Listing 14-57. The Default URL Mapping Scheme

"/$controller/$action?/$id?"()

It is easy with a URL mapping like the one in Listing 14-57 to accidentally expose an action
that should be secured. If security is of a high priority, we recommend you take control of your
URL mappings and create mapping rules for each URL that is exposed. Listing 14-58 shows an
example grails-app/conf/UrlMappings.groovy file for the gTunes application that provides
mappings for each exposed controller.

C H A P T E R 1 4 ■ S E C U R I T Y 447

Listing 14-58. Fine-Grained URL Mapping Configuration

// User access
"/your/music"(controller:"user", action:"music")
"/login"(controller:"user", action:"login")
"/logout"(controller:"user", action:"logout")
"/register"(controller:"user", action:"register")
"/stream/$id"(controller:"song", action:"stream")
"/play/$id"(controller:"song", action:"play")
"/buy/$id"(controller:"store", action:"buy")

// Anonymous browsing
"/"(controller:"store")
"/album/$id"(controller:"album", action:"display")
"/song/$id"(controller:"song", action:"display")
"/artist/$id"(controller:"artist", action:"display")
"/store"(controller:"store", action:"shop")
"/search"(controller:"store", action:"search")
"/genre/$name"(controller:"store", action:"genre")
"/blog"(controller:"blog", action:"list")

Another advantage of this approach is that you can then configure a dynamic URL map-
ping purely for administrator access, as shown in Listing 14-59.

Listing 14-59. Administrator URL Mappings

// Administrator access
"/admin/$controller/$action?/$id?"()

As you can see from Listing 14-59, all URIs that start with /admin can now be used for
administrator access. If you then secure this URI within the AuthFilters class, as shown in
Listing 14-60, you have created an area of the site that is accessible only to administrators.

Listing 14-60. Securing the /admin URI

admin(uri:'/admin/*') {
 before = {
 accessControl {
 role("ADMINISTRATOR")
 }
 }
 }

If you want to add some quick administrative features, then you could take advantage of
dynamic scaffolding, a topic covered in Chapter 2. As an example, try adding the following line
to the AlbumController class:

def scaffold = Album

448 C H A P T E R 1 4 ■ S E C U R I T Y

Now if you go to the URL http://localhost:8080/gTunes/admin/album/create, you can
create new Album instances using the CRUD interface provided. You can also go to the URL
http://localhost:8080/gTunes/admin/album/list to get a list of existing Album instances in
case you need to modify any of them. Thanks to Grails’ scaffolding feature, you have managed
to add a basic admin facility to the gTunes application that is secured with JSecurity in only a
few lines of code!

Summary
In this chapter, you explored the importance of security when developing a Grails application.
From preventing malicious users from penetrating your application to cross-site scripting and
DoS attacks to implementing authentication and authorization using a framework such as
JSecurity, we covered a lot of ground. Security is, however, a domain-specific topic, and a vari-
ety of options are available to you when developing a Grails application. If JSecurity doesn’t
fulfill your requirements, then you have the Acegi plugin or the Authentication plugin to try.
Alternatively, you could continue the “home-grown” security model. It is really up to you.

In the next chapter, we’ll cover how to implement web services in Grails. Using key
technologies such as SOAP, REST, and RSS/Atom, there is a lot to cover in this particularly
interesting area of web development. Don’t go away!

449

■ ■ ■

C H A P T E R 1 5

Web Services

The idea of web services has been a dream of the IT industry for what seems like forever. The
ability to compose applications from multiple, disparate services available over the Web was
initially put forward by the SOAP standard. SOAP defined a protocol for exchanging XML mes-
sages over a network in a language-neutral way. Although still widely used, SOAP has never
really fulfilled its potential, and a simpler model has emerged called Representational State
Transfer1 (REST). REST is a simple architectural style that utilizes the nature of the Web and its
HTTP protocol to enable web services communication.

Unlike SOAP, REST is not really a standard and in fact doesn’t even specify a requirement
for the type of the payloads sent between client and server. For example, some users of REST
services choose to use JavaScript Object Notation (JSON) or a custom format instead of XML in
their REST APIs. Nevertheless, the idea behind REST is to use simple messages for communi-
cation and to take advantage of HTTP methods like GET, PUT, POST, and DELETE to model the
different verbs found in Create/Read/Update/Delete (CRUD) applications.

While REST embraces the very nature of the Web, SOAP, on the other hand, tries to stay
protocol neutral and has no dependency on HTTP. SOAP is designed to be used in conjunction
with a set of tools or libraries that generate the client stub and server skeleton code to facilitate
communication either ahead of time or at runtime. Both have their respective advantages and
disadvantages. SOAP is very comprehensive, defining web service standards for everything
from security to metadata. However, it is also extremely complex in comparison to REST,
which targets simplicity.

As you may recall, the main aim of Grails is to embrace simplicity, and in this sense, REST
is a far better fit for Grails than SOAP—so much so that Grails provides REST support out of
the box. However, several organizations are still committed to the SOAP standard, and in this
chapter, you will see how to add both SOAP and the REST APIs to a Grails application.

In addition, we’ll be looking at the related syndication technologies Really Simple Syndi-
cation (RSS) and Atom.2 Although not strictly web services related, RSS and Atom are similar in
that they provide a way to publish information over the Web using a standard XML format. In
fact, Google’s GData web service APIs have standardized on an Atom-based format for XML
payloads.

1. REST is a broad subject, the full details of which are beyond the scope of this book, but we recommend
you read Roy Fielding’s original dissertation on the subject at http://www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm.

2. Atom refers to a pair of related standards, the Atom Syndication Format and Atom Publishing Protocol
(APP); see http://en.wikipedia.org/wiki/Atom_(standard).

450 C H A P T E R 1 5 ■ W E B S E R V I C E S

REST
As already mentioned, REST defines an architectural style for defining web services. Each
HTTP method, such as POST and GET, signifies a verb or action that can be executed on a noun.
Nouns are represented by URL patterns often referred to as resources in REST. Data is typically
exchanged using Plain Old XML (POX), an acronym established to differentiate web services
that use regular XML for data exchange from specialized versions of XML, such as the one
found in SOAP. However, many public REST web services also use JSON as the data transfer
format. Ajax clients in particular get massive benefit from JSON web services because client-
side JavaScript found in the browser has fewer problems parsing JSON data.

So, how does REST fit into a Grails-based architecture? If you think about it, the HTTP
“verbs” map nicely onto controller actions. Each controller is typically associated with a
domain class that represents the noun. All you need is a good way to get Grails to execute
different actions based on the HTTP verb. One way to do this is to define a default index action
that uses a switch statement, as shown in Listing 15-1.

Listing 15-1. Manually Implementing a RESTful Controller

class AlbumController {
 def index = {
 switch(request.method) {
 case "GET":
 return show()
 break
 case "PUT":
 return save()
 break
 ...
 }
 }
}

The approach shown in Listing 15-1 is a bit repetitive and ugly. Luckily, there is a better
way using URL mappings.

RESTful URL Mappings
For any given URL mapping, you can tell Grails to execute different actions based on the
incoming request method. Listing 15-2 shows the syntax to achieve this.

Listing 15-2. Mapping onto Different Actions Based on the HTTP Method

static mappings = {
 "/album/$id?"(controller:"album") {
 action = [GET:'show', PUT:'save', POST:'update', DELETE:'delete']
 }
}

C H A P T E R 1 5 ■ W E B S E R V I C E S 451

By assigning a map literal, where the keys are the HTTP method names, to the action param-
eter in the body of the closure passed to the URL mapping, you can tell Grails to map different
HTTP methods to different actions. Now if you open up a browser and go the URI /album, Grails
will detect the HTTP GET request and map to the show action of the AlbumController. If you then
created an HTML form that used the HTTP POST method to submit, the update action would be
used instead.

Of course, the example in Listing 15-2 is still using the database identifier to identify
albums. One of the defining aspects of REST is to use the semantics of the Web when designing
your URI schemes. If you consider for a moment that in the gTunes application you have art-
ists, albums, and songs, it would be great if REST clients could navigate the gTunes store simply
by using the URI. Take a look at the URL mapping in Listing 15-3, which presents an example
of using URL mappings that better represents the nouns within the gTunes application.

Listing 15-3. RESTful URL Example

static mappings = {
 "/music/$artist/$album?/$song?"(controller:"store") {
 action = [GET:'show', PUT:'save', POST:'update', DELETE:'delete']
 }
}

The example in Listing 15-3 shows a URL mapping that allows semantic navigation
of the gTunes store. For example, if you wanted to retrieve information about the Artist
Beck, you could go to /music/Beck. Alternatively, if you’re interested in a particular Album
by Beck, you could go to /music/Beck/Odelay, and so on.

The disadvantage of the approach in Listing 15-3 is that you are essentially mapping the
entire pattern onto a single controller—the StoreController. This places a load of burden
on the StoreController because it needs to know about artists, albums, and songs. Really, it
would be desirable to map differently depending on which URL tokens have been specified. To
achieve this, you could use a closure to define the name of the controller to map to, as shown
in Listing 15-4.

Listing 15-4. Dynamically Mapping to a Controller

"/music/$artistName/$albumTitle?/$songTitle?"{
 controller = {
 if(params.albumTitle && params.songTitle) return 'song'
 else if(params.albumTitle) return 'album'
 else return 'artist'
 }
 action = [GET:'show', PUT:'save', POST:'update', DELETE:'delete']
}

The code in Listing 15-4 shows a technique where you can use a closure to change the con-
troller (or action or view) to map to using runtime characteristics such as request parameters.
In this case, if you have enough information to retrieve a Song (such as the artist name, album
title, and song title), then the SongController is mapped to; otherwise, if only the artist name
and album title are specified, the AlbumController is mapped to, and so on.

452 C H A P T E R 1 5 ■ W E B S E R V I C E S

One of the powerful characteristics of REST that you may have already noticed is that it
behaves very much like a regular web application. The same AlbumController can be used to
deal with both incoming REST requests and regular web requests. Of course, you need to be
able to know whether to send back an XML response, in the case of a web service, or a plain
HTML page. In the next section, you’ll see how to achieve this with content negotiation.

Content Negotiation
Grails controllers have the ability to deal with different incoming request content types auto-
matically through a mechanism known as content negotiation. Although not specific to web
services (you could equally use this technique with Ajax or to support different browser
types), content negotiation is often used in conjunction with RESTful web services. The idea
behind content negotiation is to let a controller automatically detect and handle the content
type requested by the client. A few mechanisms can be used to achieve this:

• Using the ACCEPT or CONTENT_TYPE HTTP headers, Grails can detect which is the preferred
content type requested by the client. The mechanics of this will be explained in the next
section.

• Using a format request parameter, clients can request a specific content type.

• And finally, content negotiation can also be triggered using the file extension in the URI,
as in /album/list.xml.

We’ll cover each of these mechanisms in the next few sections, starting with content nego-
tiation via the HTTP ACCEPT header.

Content Negotiation with the ACCEPT Header
Every browser that conforms to the HTTP standards is required to send an ACCEPT header. The
ACCEPT header contains information about the various MIME types3 the client is able to accept.
For example, a mobile client that supports only responses in the Wireless Application Proto-
col,4 often found in mobile phones, would send an ACCEPT header something like this:

application/vnd.wap.wmlscriptc, text/vnd.wap.wml

■Tip For a detailed overview of the ACCEPT header, take a look at the specification provided by the W3C at
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

3. Multipurpose Internet Mail Extensions (MIME) is an Internet standard for describing content types;
see http://en.wikipedia.org/wiki/MIME.

4. The Wireless Application Protocol (WAP) is a wireless communication standard to enable Internet
access on mobile devices; see http://en.wikipedia.org/wiki/Wireless_Application_Protocol.

C H A P T E R 1 5 ■ W E B S E R V I C E S 453

The list of supported MIME types is defined as a comma-separated list, where the most
appropriate MIME type is first in the list. Modern browsers such as Firefox 3 typically send an
ACCEPT header like the following:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Notice the q parameter after application/xml? The ACCEPT header can specify a “quality”
rating for each MIME type. The default quality is 1.0, and the higher the quality, the more
appropriate the MIME type. As you can see from the Firefox 3 header, text/html has the high-
est priority. For Grails to know which MIME types it should handle, you may need to provide
additional configuration in grails-app/conf/Config.groovy using the grails.mime.types set-
ting. You’ll notice that Grails provides a default set of configured types for each project, an
example of which is shown in Listing 15-5.

Listing 15-5. Configuring Additional MIME Types

grails.mime.types = [html: ['text/html','application/xhtml+xml'],
 xml: ['text/xml', 'application/xml'],
 js: 'text/javascript',
 ...
]

To tell Grails to handle other types beyond the preconfigured ones, you need to add a new
entry into the grails.mime.types map where the key is the file extension of the format typically
used and the value is the MIME type found in the ACCEPT header. For example, to add support
for WAP, where Wireless Markup Language (WML) files are typically served, you can add the
following configuration:

grails.mime.types = [html: ['text/html','application/xhtml+xml'],
 wml: ['text/vnd.wap.wml'],
 ...
]

Of course, if you don’t need to support any niche formats such as WML, you can skip this
configuration. For the purposes of REST web services, Grails is already preconfigured to be
able to handle XML requests. So, how exactly do you deal with a request that needs to send
back multiple formats? If you simply want to know the format of an incoming request in order
to use branching logic, you can use the format property of the request object:

assert request.format == 'xml'

However, Grails provides a more elegant way to deal with different format types using the
withFormat method of controllers. Using withFormat, you can tell a controller to handle XML,
HTML, and even WML requests differently. For example, take a look at the code in Listing 15-6.

Listing 15-6. Using the withFormat Method

1 import grails.converters.*
2 class ArtistController {
3 def show = {

454 C H A P T E R 1 5 ■ W E B S E R V I C E S

4 def artist = params.artistName ? Artist.findByName(params.artistName) :
5 Artist.get(params.id)
6
7 if(artist) {
8 withFormat {
9 html artist:artist, albums:artist?.albums
10 xml { render artist as XML }
11 }
12 }
13 else {
14 response.sendError 404
15 }
16 }
17 ...
18 }

The code in Listing 15-6 shows how to handle a request when the URL mapping in
Listing 15-4 ends up mapping to the ArtistController. Quite a few new concepts have been
introduced in such a small snippet of code, so to understand it fully, let’s step through it line
by line starting with line 1:

1 import grails.converters.*

Here the grails.converters package is imported, which provides features to enable the
marshaling of Java objects into XML or JSON. You’ll see the significance of this later; for
the moment, take a look at the first change to the code on line 7:

8 withFormat {

Using the withFormat method, which takes a block, you can send different responses for
different request formats. Each nested method within the passed closure matches the name of
a format; for example, the html method on line 9 handles regular browser requests:

9 html artist:artist, album:album

Notice that you can pass a model to the view to be rendered. In this case, the withFormat
method will pass control to a view called grails-app/views/artist/show.gsp, which doesn’t
exist just yet. Finally, on line 10, you can see the code that deals with an XML response:

10 xml { render artist as XML }

In this example, you can see the first usage of the grails.converters package. The
expression render artist as XML uses the imported grails.converters.XML converter to
automatically marshal the Artist instance into the XML format. That’s pretty simple, but
how does a client go about communicating with this XML API? Well, think about how you
interact with the application using your browser. For example, load the gTunes application,
go to the store, and navigate to one of the existing artists using the REST URI conventions you
established in Listing 15-4 such as /music/Kings of Leon.

C H A P T E R 1 5 ■ W E B S E R V I C E S 455

Unsurprisingly, you get a 404 error since the grails-app/views/artist/show.gsp view
does not exist. You can create it quickly, as shown in Listing 15-7.

Listing 15-7. The Artist show.gsp View

<g:applyLayout name="storeLayout">
 <g:render template="artist" model="[artist:artist]"></g:render>
</g:applyLayout>

As you can see, the show.gsp view is pretty trivial since you already created a template
called _artist.gsp that does the hard work. Now if you refresh, you should get the view ren-
dered appropriately, as shown in Figure 15-1.

Figure 15-1. The grails-app/views/artist/show.gsp view rendered

Take note of the URL in the address bar. If you have set up the URL mappings as shown
in Listing 15-2, you should have a URL something like http://localhost:8080/gTunes/music/
Kings of Leon. Now load the Grails console by typing the command grails console into a sep-
arate command window from the root of the gTunes project. With that done, try the script in
Listing 15-8.

Listing 15-8. Communicating with a REST API

url = new URL("http://localhost:8080/gTunes/music/Kings%20Of%20Leon")

conn = url.openConnection()
conn.addRequestProperty("accept","application/xml")

artist = new XmlSlurper().parse(conn.content)

println "Artist Name = ${artist.name}"

456 C H A P T E R 1 5 ■ W E B S E R V I C E S

Notice how in Listing 15-8 the addRequestProperty method of the URLConnection object
is used to set the ACCEPT header to application/xml. The result is that instead of the HTML
response you got from the browser, you get an XML one. If you want to see the XML sent back
from the server, try replacing the XmlSlurper parsing code with the following line:

println conn.content.text

The response sent back by the withFormat method and its usage of the expression render
artist as XML will result in XML that can be parsed with a parser like Groovy’s XmlSlurper, an
example of which is shown in Listing 15-9.

Listing 15-9. Grails’ Automatic XML Marshaling Capabilities

<?xml version="1.0" encoding="UTF-8"?>
<artist id="4">
 <albums>
 <album id="4"/>
 </albums>
 <dateCreated>2008-08-04 21:05:08.0</dateCreated>
 <lastUpdated>2008-08-04 21:05:08.0</lastUpdated>
 <name>Kings of Leon</name>
</artist>

Grails has used the ACCEPT header in combination with the withFormat method to establish
what kind of response the client is anticipating. Since the topic of marshaling to XML is a pretty
important one when it comes to REST, we’ll be looking at it in more detail later in the chapter.
First, however, let’s look at one gotcha related to ACCEPT header content negotiation.

The ACCEPT Header and Older Browsers
Depending on the clients you expect to serve, the ACCEPT header might not be so reliable.
There is a nasty catch when using the ACCEPT header in that older browsers, including Inter-
net Explorer 6 and older, simply specify */* within the ACCEPT header, meaning they accept
any format.

So, how does Grails deal with an ACCEPT header of */*? Well, if you look at the withFormat
definition in Listing 15-6, you’ll notice that the html method is called first, followed by the xml
method. If the ACCEPT header contains */*, then Grails will invoke the first method it finds
within the withFormat method, which in this case is the html method. The result is that, even on
older browsers, HTML will be served by default.

If this is not the desired behavior, you can also specify a method within the withFormat block to
deal with an ACCEPT header containing */*. You may have noticed that the grails.mime.types set-
ting of the grails-app/conf/Config.groovy file matches a MIME type of */* to a format called all:

grails.mime.types = [...,
 all: '*/*']

What this means is that within the withFormat block, you can define a method to handle
the all format type, as shown in the example in Listing 15-10.

C H A P T E R 1 5 ■ W E B S E R V I C E S 457

Listing 15-10. Dealing with the all Format

withFormat {
 html artist:artist, albums:artist?.albums
 all artist:artist, albums:artist?.albums
 xml { render artist as XML }
}

In this case, Listing 15-10 is not doing anything differently, but you could have your own
custom logic to deal with all if required. If this is too dreadful to contemplate and you prefer
not to use the ACCEPT header, then consider the techniques in the following sections.

Content Negotiation with the CONTENT_TYPE Header
An alternative to using the ACCEPT header is to use the HTTP CONTENT_TYPE header, which is
designed to specify the incoming content type of the request. To try a client that uses the
CONTENT_TYPE header, open the Grails console again, and run the script in Listing 15-11.

Listing 15-11. Communicating with a REST API Using the CONTENT_TYPE Header

url = new URL("http://localhost:8080/gTunes/music/Kings%20Of%20Leon")

conn = url.openConnection()
conn.addRequestProperty("content-type","application/xml")

artist = new XmlSlurper().parse(conn.content)

println "Artist Name = ${artist.name}"

The code is identical to Listing 15-8 except that the CONTENT-TYPE header is passed to the
addRequestProperty method. The CONTENT_TYPE header always takes precedence over the
ACCEPT header if both are specified. Another advantage of using the CONTENT_TYPE header is that
the API support for manipulating the content type is a little simpler for Ajax clients. For exam-
ple, you could use some JavaScript and the Prototype library in Listing 15-12 to call the web
service and manipulate the incoming XML.

Listing 15-12. Calling REST Web Services from JavaScript

new Ajax.Request("http://localhost:8080/gTunes/music/Kings%20Of%20Leon",
 { contentType:"text/xml",
 onComplete:function(response) {
 var xml = response.responseXML;
 var root = xml.documentElement;
 var elements = root.getElementsByTagName("name")
 alert("Artist name = " + elements[0].firstChild.data);
 }
 })

458 C H A P T E R 1 5 ■ W E B S E R V I C E S

■Note The JavaScript in Listing 15-12 works only because it is being run from the same host and port as
the server application. One of the limitations of JavaScript is that cross-domain Ajax is forbidden for security
reasons. However, there are ways around these limitations by using subdomain tricks and also by allowing
users of the web service to include JavaScript served by your server. There is even an initiative to create
a standard for cross-domain communication (see http://ajaxian.com/archives/the-fight-for-
cross-domain-xmlhttprequest). However, the topic is broad and beyond the scope of this book.

As you can see in Listing 15-12, by specifying the contentType option passed to Prototype’s
Ajax.Request object, you can tell Prototype to send a different CONTENT_TYPE header in the
request. The onComplete event handler can then take the resulting XML and manipulate it via
the JavaScript Document Object Model (DOM). So, that’s it for the HTTP headers involved in
content negotiation. In the next couple of sections, we’ll cover some alternative ways to handle
different formats.

Content Negotiation Using File Extensions
One of the easiest ways to specify that the client needs a particular format is to use the file
extension in the URI. As an example, open the Grails console again, and try the script in
Listing 15-13.

Listing 15-13. Using the File Extension for Content Negotiation

url = new URL("http://localhost:8080/gTunes/music/Kings%20Of%20Leon.xml")

conn = url.openConnection()
artist = new XmlSlurper().parse(conn.content)

println "Artist Name = ${artist.name}"

Notice that, unlike the script in Listing 15-11, the definitions of the CONTENT_TYPE and
ACCEPT headers have been removed from this example. Instead, the extension .xml is specified
in the URI, from which Grails automatically recognizes that XML is being requested and sends
back an XML response.

If you remove the XML MIME type definition from the grails.mime.types setting in
grails-app/conf/Config.groovy, Grails will no longer deal with the .xml file extension. If
you prefer to not use this feature at all, you can disable it completely by setting grails.mime.
file.extensions in Config.groovy to false:

grails.mime.file.extensions=false

C H A P T E R 1 5 ■ W E B S E R V I C E S 459

Content Negotiation with a Request Parameter
The final form of content negotiation is to use the format request parameter. For example, the
code in Listing 15-13 can be adapted to use the format request parameter simply by changing
the first line:

url = new URL("http://localhost:8080/gTunes/music/Kings%20Of%20Leon?format=xml")

Notice how instead of using the file extension .xml, the format parameter is passed with a
value of xml. As an alternative to specifying the format parameter in the URL itself, you could
provide it via a URL mapping. For example, consider the code added to the grails-app/conf/
UrlMappings.groovy file in Listing 15-14.

Listing 15-14. Proving the format Parameter in a URL Mapping

"/music/$artist"(controller:"artist") {
 action = "show"
 format = "xml"
}

Highlighted in bold in Listing 15-14 is the format parameter. As you learned in Chapter 6,
you can provide parameters directly in the URL mapping!

And with that, we have completed the tour of the different ways to trigger content negoti-
ation. However, a typical scenario in content negotiation is to have multiple different views for
different format types. In the next section, you’ll find out how to achieve this.

Content Negotiation and the View
Consider for a moment the usage of the withFormat method in Listing 15-6. You’ll note that
currently the code is handling two different format types: xml and html. In the case of xml, the
code renders some XML directly to the response, and in the case of html, it is utilizing a view.
However, what if you changed the code to look like the snippet in Listing 15-15?

Listing 15-15. Multiple View Delegates Within withFormat

withFormat {
 html artist:artist, albums:artist?.albums
 wml artist:artist, albums:artist?.albums
 xml { render artist as XML }
}

Notice how in Listing 15-15 there is the addition of a new withFormat handler that deals
with wml. It too delegates to a view, so now you have two different format types delegating to the
same view! That’s putting a lot of responsibility on the view to know exactly which format type
it’s dealing with. Imagine the hideous if/else branching you would have to do to serve both

460 C H A P T E R 1 5 ■ W E B S E R V I C E S

HTML and WML in the same view! Luckily, there is another way. If you include the file exten-
sion at the end of the view name but before the .gsp extension, Grails will choose the view that
is most specific.

For example, in the case of Listing 15-15, if you had a view called grails-app/views/
artist/show.wml.gsp, then that view would be responsible for serving WML pages, and if
you had a view called grails-app/views/artist/show.html.gsp, that view would deal with
standard HTML. Of course, if a view can’t be found to match a particular format, then Grails
falls back on the usual conventions by using the regular show.gsp view. Nevertheless, as you
can see, Grails makes it easy to serve different views for different format types using the power
of Convention over Configuration.

So, in the earlier “Content Negotiation with the ACCEPT Header” section, we touched
on XML marshaling with the grails.converters package. In the next few sections, you’ll get a
more detailed look at the marshaling and unmarshaling of XML, including the different ways it
can be done.

Marshaling Objects to XML
In the previous sections, we touched on the render artist as XML expression used to marshal
objects into XML in one line of code. If you take a look back at Listing 15-9, the XML is pro-
duced by Grails’ built-in converters in the grails.converters package. Notice how the albums
collection has been marshaled into a set of identifiers only. The client could use these identifi-
ers to utilize a separate web service to obtain the XML for each Album. Alternatively, you could
use the converters provided in the grails.converters.deep package that traverse the relation-
ships of a domain class, converting each into XML. All you need to change is the import at the
top of the ArtistController class to the following:

import grails.converters.deep.*

The downside is, of course, that you get a much larger XML response, an example of which
is shown in Listing 15-16, shortened for brevity.

Listing 15-16. Marshaling XML with the Deep Converter

<?xml version="1.0" encoding="UTF-8"?>
<artist id="4">
 <albums>
 <album id="4">
 <artist reference="/artist"/>
 <dateCreated>2008-08-04 21:05:08.0</dateCreated>
 <genre>Rock</genre>
 <lastUpdated>2008-08-04 21:05:08.0</lastUpdated>
 <price>10.99</price>

C H A P T E R 1 5 ■ W E B S E R V I C E S 461

 <songs>
 <song id="37">
 <album reference="/artist/albums/album"/>
 <artist reference="/artist"/>
 <dateCreated>2008-08-04 21:05:08.0</dateCreated>
 <duration>430346</duration>
 <genre>Rock</genre>

 <lastUpdated>2008-08-04 21:05:08.0</lastUpdated>
 <title>Knocked Up</title>
 <trackNumber>1</trackNumber>
 <year>2007</year>
 </song>
 ...
 </songs>
 <title>Because of the Times</title>
 <year>2007</year>
 </album>
 </albums>
 <dateCreated>2008-08-04 21:05:08.0</dateCreated>
 <lastUpdated>2008-08-04 21:05:08.0</lastUpdated>
 <name>Kings of Leon</name>
</artist>

The upside is that the client gets a lot more information, which can be parsed and dealt
with. Returning to the Grails console, try the script in Listing 15-17.

Listing 15-17. Using the Deep Converters Results

url = new URL("http://localhost:8080/gTunes/music/Kings%20Of%20Leon")

conn = url.openConnection()
conn.addRequestProperty("accept","application/xml")

artist = new XmlSlurper().parse(conn.content)

println "Artist Name = ${artist.name}"
println "Albums ---"
for(album in artist.albums.album) {
 println "Album Title = $album.title"
 println "Songs ---"
 album.songs.song.eachWithIndex { song, i ->
 println "${i+1}) $song.title"
 }
}

462 C H A P T E R 1 5 ■ W E B S E R V I C E S

Notice how in Listing 15-17 you can find out not only about the Artist but also about all of
their albums and the songs within those albums. The output from running this script is some-
thing like this:

Artist Name = Kings of Leon
Albums ---
Album Title = Because of the Times
Songs ---
1) Knocked Up
2) Charmer
...

Of course, the XML in Listing 15-16 may not be optimal because it contains a lot of data
that the client may not need. Luckily, Grails also provides a simple way to marshal XML using
a builder approach. Listing 15-18 shows the ArtistController class using the render method’s
capability to take a closure that represents the builder code needed to output XML.

Listing 15-18. Using an XML Builder to Output XML

class ArtistController {
 def show = {
 def a = params.artistName ? Artist.findByName(params.artist) :
 Artist.get(params.id)

 if(a) {
 withFormat {
 html artist:a, albums:a?.albums
 xml {
 render(contentType:"text/xml") {
 artist(name:a.name) {
 for(alb in a.albums) {
 album(title:alb.title,
 year:alb.year,
 genre:alb.genre,
 price:alb.price) {
 for(s in alb.songs) {
 song(title:s.title,
 number:s.trackNumber,
 duration:s.duration)
 }
 }
 }

C H A P T E R 1 5 ■ W E B S E R V I C E S 463

 }
 }
 }
 }
 }
 else {
 response.sendError 404
 }
 }
}

To trigger the builder, you can use the render method, passing a contentType argument with
a value of text/xml and a closure containing the builder code. The way the builder works is that
each method name relates to an XML element. You’ll notice from the code in Listing 15-18 that
you have to be very careful not to define local variables using names you plan to use for XML ele-
ments; otherwise, Groovy will try to invoke them, thinking the variable is a closure. Nevertheless,
you can see the result of the code in Listing 15-18 in Listing 15-19.

Listing 15-19. Output Using the Builder Approach

<?xml version="1.0"?>
<artist name="Kings of Leon">
 <album title="Because of the Times" year="2007" genre="Rock" price="10.99">
 <song title="Knocked Up" number="1" duration="430346"/>
 <song title="Charmer" number="2" duration="176893"/>
 ...
 </album>
</artist>

As you can see, the XML in Listing 15-19 is far more concise than that produced by the
deep converter. Of course, it depends very much on your domain model. For most common
cases, the grails.converter package is fine; however, if you do need fine-grained control over
the XML produced, then the builder approach is a good alternative.

Marshaling Objects to JSON
As mentioned previously, REST is not limited to XML as a transport medium. JSON is a pop-
ular choice for REST web services that have many Ajax clients because of the ease with which
it is possible to parse JSON using JavaScript—somewhat unsurprising given JSON is native
JavaScript itself.

Fortunately, Grails makes it pretty easy to convert objects and other data structures to
JSON using the grails.converters package. Listing 15-20 shows how you can use the render
object as JSON expression to output JSON.

464 C H A P T E R 1 5 ■ W E B S E R V I C E S

Listing 15-20. Dealing with the all Format

import grails.converters.*
...
withFormat {
 html artist:artist, albums:artist?.albums
 all artist:artist, albums:artist?.albums
 xml { render artist as XML }
 json { render artist as JSON }
}

Using file extension content negotiation, if you open a browser and hit the URL
http://localhost:8080/gTunes/music/Kings Of Leon.json, Grails will return a JSON
response. Depending on your browser, you may be asked to download the file, since the
rendering of JSON is not typically supported by browsers in the same way XML is. Never-
theless, Grails will do its best to marshal whatever you pass to the render method into
appropriate JSON, an example of which is shown in Listing 15-21.

Listing 15-21. Example JSON Response

{ "id":26,
 "class":"Artist",
 "albums":[{"class":"Album","id":4}],
 "dateCreated":"2008-08-04T21:05:08Z",
 "lastUpdated":"2008-08-04T21:05:08Z",
 "name":"Kings Of Leon"
}

So, now that you have some JSON, what conceivable benefit does it have over XML? Well,
compared to the angle-bracketed XML, it is a little terser. However, the main benefit is to Ajax
clients. Using a library like Prototype, it is trivial to parse the JSON in Listing 15-21, as shown in
Listing 15-22.

Listing 15-22. Parsing JSON on the Client

new Ajax.Request('http://localhost:8080/gTunes/music/Kings Of Leon.json', {
 method:'get',
 requestHeaders: {Accept: 'application/json'},
 evalJSON: true,
 onSuccess: function(response){
 var artist = response.responseJSON;

 alert("Artist Name = " + artist.name);
 }
});

C H A P T E R 1 5 ■ W E B S E R V I C E S 465

Compare the simplicity of evaluating a block of JSON to the pain of JavaScript DOM
programming, and you will realize that JSON is certainly the better choice if your primary audi-
ence is Ajax clients. Furthermore, many popular Ajax toolkits, such as Yahoo UI and Ext-JS,
allow you to use JSON data sources to populate rich components such as dynamic data tables,
which may influence your choice in deciding whether to use JSON.

As well as rendering simple responses, the JSON converter, like the XML converter, also
supports deep nested graphs of objects by changing the import to the grails.converters.deep
package:

import grails.converters.deep.JSON

Grails also features a builder for constructing custom JSON responses, similar to the XML
builder demonstrated in Listing 15-23.

Listing 15-23. Using the JSON Builder

..
withFormat {
 ...
 json {
 render(contentType:"text/json") {
 name a.name
 albums {
 for(alb in a.albums) {
 album name:alb.title
 }
 }
 }
 }
}

As you can see, to trigger the JSON builder, you can pass the contentType parameter with a
value of text/json or application/json. Then, within the body of the closure passed as the last
argument, you can construct the JSON. Each method call in the JSON builder creates a new
entry in the JSON object. You can create JSON arrays by passing a closure to a method and
invoking a method for each array entry. Listing 15-24 shows the result of the JSON builder
notation in Listing 15-23.

Listing 15-24. Result of Using the JSON Builder

{
 "name":"Kings of Leon",
 "albums":[{"name":"Because of the Times"},
 {"name":"Aha Shake Heartbreak"}]
}

466 C H A P T E R 1 5 ■ W E B S E R V I C E S

Unmarshaling XML or JSON
Everything you have seen so far is modeled around the use of the HTTP GET method to read
data from a REST web service. GET requests in REST are undoubtedly the most common; how-
ever, many REST web services also allow users to perform write operations on the server. A key
principle of REST is that a GET request should never cause the state of the server to change.
Other HTTP methods such as POST, PUT, and DELETE should be used in a REST model to perform
write operations.

Many public web services that claim to use a RESTful approach in fact ignore this philoso-
phy and design everything around the GET method. A GET is a lot easier to interact with because
you can simply type the URL of the web service into your browser to issue a GET request. Other
kinds of requests such as POST, PUT, and DELETE, however, require you to use HTTP utilities such
as the Firefox Poster plugin or Fiddler, an HTTP debugging proxy, for Windows machines.

Nevertheless, it is best practice to follow the REST philosophy. Modeling everything
around GET could be very damaging if you have certain GET requests that fundamentally change
the data on your system. Web spiders, such as Google’s search engine crawler, could quite
easily step on the toes of your application by inadvertently sending GET requests to your web
services! In this book, we’ll be following the REST philosophy as it was designed to be imple-
mented, even if it’s a bit fussier.

Another great thing about REST is that as soon as you read data from a REST web service,
you implicitly know how to perform updates to REST resources. Remember, REST stands for
Representational State Transfer. This implies that when a REST web service sends you some
data in XML or JSON, in order to perform a write operation all you need to do is send the
changed data back in the same form it was sent to you.

Let’s start by looking at the POST request first. In the context of REST, the POST method is
used when a web service user wants to update data. For example, assuming you’re using the
render album as XML approach, if you access one of the albums from the gTunes application
using the RESTful paths you established earlier, you’ll get some XML back like that shown in
Listing 15-25.

Listing 15-25. XML Returned from a GET Request

<?xml version="1.0" encoding="UTF-8"?>
<album id="12">
 <artist id="26"/>
 <dateCreated>2008-08-21 14:26:40.0</dateCreated>
 <genre>Alternative & Punk</genre>
 <lastUpdated>2008-08-21 14:26:40.0</lastUpdated>
 <price>8.99</price>
 <songs>
 <song id="134"/>
 ...
 </songs>
 <title>Aha Shake Heartbreak</title>
 <year>2004</year>
</album>

C H A P T E R 1 5 ■ W E B S E R V I C E S 467

To get the XML in Listing 15-25, you can access the URI /music/Kings%20Of%20Leon/
Aha%20Shack%20Heartbreak.xml using file extension content negotiation. Now, immediately
you know how to update the data because the format has been sent to you in the GET request.
But here is the catch. How do you test sending POST data to the server? Unlike sending a GET
request, you can’t just type the URI into the browser. To send a POST request, you’re going to
need a little help from the Firefox Poster plugin available from https://addons.mozilla.org/
en-US/firefox/addon/2691.

Once installed, the Poster plugin will add a little “P” icon into the Firefox system tray, as
shown in Figure 15-2.

Figure 15-2. The Poster plugin tray icon

When you click the Poster icon, it will load a new window separate to the main Firefox
window that contains the features of the Poster plugin. Fundamentally, it allows you to spec-
ify a URL to send a request to, plus a bunch of other stuff like the HTTP method, any content
to send, and so on. Figure 15-3 shows the Poster window with the URL to the XML from
Listing 15-25 specified.

Figure 15-3. The Poster plugins main window

468 C H A P T E R 1 5 ■ W E B S E R V I C E S

In the “Actions” pane, you can add headers like the ACCEPT header by selecting the “Head-
ers” drop-down list and clicking the “Go” button. Figure 15-4 shows how to specify an ACCEPT
header of text/xml.

Figure 15-4. Specifying an ACCEPT header with the Poster plugin

Once the necessary ACCEPT headers and parameters have been specified, you can send a
request by choosing the HTTP method from the drop-down box in the “Actions” panel and hit-
ting the “Go” button. You’ll then get the response popping up in a new window showing the
XML coming back from the server. Figure 15-5 shows the same response from Listing 15-25
appearing in the Poster plugin’s response window.

Now here’s the trick to send data back to a REST service. All you need do is copy the text
from the response shown in Figure 15-5 and paste it into the Poster plugin’s “Content to Send”
field. Then simply modify the data to reflect the changes you want to make. For example, if you
want to change the genre from Alternative & Punk to simply Rock, you could use the XML in
Listing 15-26 with the changes from Listing 15-25 highlighted in bold.

C H A P T E R 1 5 ■ W E B S E R V I C E S 469

Figure 15-5. The Poster plugins response window

Listing 15-26. Updating the XML to Send to a REST Service

<?xml version="1.0" encoding="UTF-8"?>
<album id="12">
 <artist id="26"/>
 <dateCreated>2008-08-21 14:26:40.0</dateCreated>
 <genre>Rock</genre>
 <lastUpdated>2008-08-21 14:26:40.0</lastUpdated>
 <price>8.99</price>
 <songs>
 <song id="134"/>
 ...
 </songs>
 <title>Aha Shake Heartbreak</title>
 <year>2004</year>
</album>

470 C H A P T E R 1 5 ■ W E B S E R V I C E S

Finally, to send the request use the first drop-down box in the “Actions” panel, change
the method to the POST request, and hit the “Go” button. Unfortunately, in this case, the
response from the server is a 404. Why? Well, currently the gTunes application can deal with
GET requests but not POST requests. If you recall, the URL mapping from Listing 15-2 mapped
POST requests onto an action called update, which doesn’t exist yet.

Let’s add the code necessary to implement the update action. Listing 15-27 shows the
complete code, which we will step through in a moment.

Listing 15-27. Handling POST Requests in a REST Web Service

1 def update = {
2 def album = Album.get(params['album']?.id)
3 if(album) {
4 album.properties = params['album']
5 album.save()
6 withFormat {
7 html {
8 render(view:"show", [album:album, artist:album.artist])
9 }
10 xml {
11 if(!album.hasErrors()) {
12 render album as XML
13 }
14 else {
15 render album.errors as XML
16 }
17 }
18 }
19
20 }
21 else {
22 response.sendError 404
23 }
24 }
25 }

Listing 15-27 is one of the longer listings you’ve seen so far in the book and there is a lot
going on there, so we’ll walk you through the code so you can understand what it is doing.
First, on line 2, the Album instance is obtained using the id of the album contained within the
params object:

2 def album = Album.get(params['album']?.id)

But hold on. Aren’t you dealing with an XML request here? Where are the reams of XML
parsing code? And where did this magical album within the params object come from? Quite
simply, when Grails detects an incoming XML request, it will automatically parse it and config-
ure the params object based on the contents of the XML. The power of this pattern is that as far
as you are concerned, dealing with an XML (or JSON) request is no different from dealing with
a regular form submission.

C H A P T E R 1 5 ■ W E B S E R V I C E S 471

■Note Automatic unmarshaling works only with XML that matches the conventions used within the
render as XML and render as JSON automatic marshaling capabilities. If you are using a custom format,
then it is your responsibility to unmarshal appropriately.

You can submit the same request to the update action using form data that starts with
the album prefix. Remember how we mentioned that REST models the natural behaviors of the
Web? Here you have a prime example of how Grails embraces that by allowing you to eliminate
the need to differentiate between regular form submissions and REST web service requests.
Another example of this can be seen on line 5, where Grails’ normal data-binding pattern,
which you learned in Chapter 4, is used to update the Album instance:

4 album.properties = params['album']

Then on line 5, the Album instance is saved:

5 album.save()

With that done, it’s time for the withFormat method to do its thing and deal with both
HTML and XML formats on line 6:

6 withFormat {

In the case of HTML, for the moment it just renders the show.gsp view again:

7 html {
8 render(view:"show", [album:album, artist:album.artist])
9 }

The show.gsp view could be updated to utilize the <g:renderErrors> tag to display any
update errors to the user. In the case of XML, the logic is a little different. If there are no errors,
then you can simply send the Album back to the caller of the REST API with the changes
reflected on lines 10 to 13:

10 xml {
11 if(!album.hasErrors()) {
12 render album as XML
13 }
 ...
18 }

However, if there are validation errors, you can send an error response using the errors
property of the Album instance. By using the render method, you can automatically marshal
errors to XML:

15 render album.errors as XML

Now you can try calling the update action via a REST web service. First, return to the Fire-
fox Poster plugin, and try to resubmit the POST request. This time when you submit the POST
request, you can see the <genre> element in the XML has been updated in the response! If you

472 C H A P T E R 1 5 ■ W E B S E R V I C E S

tried to send an invalid value such as a blank Album title to the web service, you would get an
error response like the one shown in Listing 15-28.

Listing 15-28. An Error Response from a REST Web Service

<errors>
 <error object= "com.g2one.gtunes.Album"
 field= "title"
 message= "Property [title] of class..."
 rejected-value="" />
</errors>

And with that, you have added support, not only for reading information about albums
and artists via a REST API but also for updating album details. Feel free to explore the capability
further by implementing support for updating artists and songs via POST requests. This exercise
is similar in each instance and will give you good practice in using Grails’ REST support.

Note that adding support for PUT and DELETE is largely similar to what you’ve already seen.
In the case of a PUT request, instead of looking up an existing instance, as you saw on line 3 of
Listing 15-27, you would create a brand new instance by passing the params object into the con-
structor, as shown in Listing 15-29.

Listing 15-29. Binding XML Data to New Instances

def save = {
 def album = new Album(params["album"])
 ...
}

The remaining code to deal with PUT requests is much like the update action in Listing 15-27.
As for the DELETE requests, you just have to obtain the instance and call the delete() method. It’s
pretty simple really. However, one thing we haven’t yet discussed is security.

REST and Security
In Chapter 14, you used the JSecurity framework to secure the gTunes application. Having an
open REST API that allows any user to update the data in the gTunes application is probably
not desirable. There are a number of different ways to implement security with REST. In fact,
the issue of security in REST is one of the hottest points in the SOAP vs. REST debate, because—
unlike SOAP, which defines a standard for security called WS-Security—there is no standard
for REST security.

If you plan to maintain a completely stateless client API, then you could use request head-
ers such as the Authorization HTTP header with some form of token-based authentication.
This is a model followed by Google and Amazon in their REST APIs. Alternatively, you could use
Secure Sockets Layer (SSL) communication over HTTPS with basic authentication provided by
the web server. The topic of security in REST is broad and has many ramifications.

C H A P T E R 1 5 ■ W E B S E R V I C E S 473

Assuming it’s OK to maintain stateful clients, then another, possibly simpler, alternative is
to use the JSecurity framework and provide a REST API onto your application’s login system.
The downside is that clients would be required to support cookies in order for the server to be
aware that the client is logged in. The Apache Commons HttpClient (http://hc.apache.org/
httpclient-3.x/authentication.html) project is an example of a client-side library that sup-
ports cookies, which clients can take advantage of.

Atom and RSS
Atom and RSS are two competing standards to allow the publishing of web feeds. The two for-
mats have proven very popular with many applications, including modern web browsers that
support RSS and Atom feeds to provide news headlines, as well as with blog aggregators. Nearly
every website you visit nowadays has either an RSS or Atom feed that you can subscribe to, to
get the latest news or information. Although the provision of RSS or Atom feeds is not a web
service in the traditional sense, it is very similar in that the mechanics involve the exchange of
XML data over HTTP.

Moreover, Google is actually standardizing on Atom and the Atom Publishing Protocol
(APP) as the format used in all of its web services APIs, so there is clearly a lot of crossover
between REST and the syndication formats Atom and RSS. Currently, Grails doesn’t provide
support for RSS and Atom out of the box, but an excellent Feeds plugin is available in the plugin
repository. In the following sections, we’ll be covering how to install the Feeds plugin and pro-
vide RSS and Atom feeds that show the latest additions to the gTunes library.

To get started, you first need to install the Feeds plugin by running the following
command:

$ grails install-plugin feeds

Creating RSS and Atom Feeds
What the Feeds plugin does is add functionality to the render method to facilitate the render-
ing of RSS and Atom feeds. Under the covers, the plugin is using the popular Rome library
(http://rome.dev.java.net/) to produce the feeds; Rome is yet another example of how
Grails promotes reuse of the existing Java ecosystem. Let’s look at an example in code of
how to use the Feeds plugin; see Listing 15-30.

Listing 15-30. Rendering RSS and Atom Feeds with the Feeds Plugin

1 def latest = {
2 def newestAlbums = Album.list(max:5, sort:"dateCreated", order:"desc")
3
4 def feed = {
5 title = "Newest Additions to gTunes"
6 link = g.createLink(controller:"store",
7 action:"latest",
8 params:[format:request.format])

474 C H A P T E R 1 5 ■ W E B S E R V I C E S

9 description = "Track the newest additions to the gTunes music store"
10 for(a in newestAlbums) {
11 entry(a.title) {
12 link = g.createLink(controller:"album", action:"show", id:a.id)
13 g.render(template:"/album/album", model:[album:a, artist:a.artist])
14 }
15 }
16 }
17
18 withFormat {
19 rss { render(feedType:"rss", feed) }
20 atom { render(feedType:"atom", feed) }
21 }
22 }

The code in Listing 15-30 adds a new action to the StoreController that provides RSS and
Atom feeds of the five most recent additions to the albums within gTunes’ library of music.
Once again, the code takes advantage of Grails’ content negotiation feature described earlier in
the chapter to deliver both RSS and Atoms feeds. First, on line 2, the five most recent albums
are obtained using GORM’s list method:

2 def newestAlbums = Album.list(max:5, sort:"dateCreated", order:"desc")

Then on line 4, the feed is constructed using the builder syntax defined by the Feeds
plugin:

4 def feed = {

The Feeds plugin uses a domain-specific language (DSL) to wrap the inner workings of the
Rome API. Your job is limited to specifying the feed title, description, and entries.

■Tip For a more comprehensive overview of the syntax supported by the Feeds plugin, refer to the docu-
mentation available at http://grails.org/Feeds+Plugin.

Lines 5 to 9 do the job of setting a title for the feed, as well as a more detailed description
and a link back to the feed URL:

5 title = "Newest Additions to gTunes"
6 link = g.createLink(controller:"store",
7 action:"latest",
8 params:[format:request.format])
9 description = "Track the newest additions to the gTunes music store"

C H A P T E R 1 5 ■ W E B S E R V I C E S 475

Notice how on line 6 you can take advantage of the <g:createLink> tag called as a method
to create a link back to the feed with the appropriate format prepopulated. In this example,
title and description have been hard-coded, but you could just as easily pull this information
from an i18n message bundle using the <g:message> tag called as a method, as described in
Chapter 7:

title = g.message(code:"gtunes.latest.feed.title")

With all the metadata provided to the feed, the next job is to create the entries for the feed.
The syntax used by the Feeds plugin is to call a method called entry, passing in the entry title
and a closure. Within the body of the closure, you are able to set metadata about the entry,
including a link back to it. Finally, the return value of the closure is used to populate the
markup contained within the body of the feed entry. You can see the mechanics of this in
action on lines 11 to 14:

11 entry(a.title) {
12 link = g.createLink(controller:"album", action:"show", id:a.id)
13 g.render(template:"/album/album", model:[album:a,
artist:a.artist])
14 }

Notice how once again you can use the <g:createLink> tag to create a link to the album.
Also, to populate the body content of the entry, you can take advantage of the <g:render> tag
called as a method to render the grails-app/albums/_album.gsp template, which already
knows how to format an album appropriately. With that done, it’s time to use the feed, and
once again you see the withFormat method in action on line 18:

18 withFormat {
 ...
21 }

However, unlike in previous examples, instead of handling HTML or XML, this example
uses content negotiation to deliver RSS and Atom formats:

19 rss { render(feedType:"rss", feed) }
20 atom { render(feedType:"atom", feed) }

There are a few key things to notice about the previous code. First, as you can see within
the withFormat method, you can enable the handling of RSS and Atom feeds by calling the
rss and atom methods, respectively, passing in a closure that should be invoked in each case.
Within the body of each closure, you can see the render method used in combination with the
feedType argument to specify either rss or atom. To maintain the DRYness5 of the code, notice
how you can pass the same reference to the feed closure regardless of whether you are render-
ing an Atom or an RSS feed.

One final thing to do is to create a new URL mapping in the grails-app/conf/UrlMappings.
groovy file so that the feeds are exposed:

5. Don’t Repeat Yourself (DRY) is an acronym used in programming circles to describe the philosophy of
avoiding repetition at all costs.

476 C H A P T E R 1 5 ■ W E B S E R V I C E S

"/store/latest"(controller:"store",action:"latest")

Your efforts are complete. To access the RSS feed, you can use the URL http://
localhost:8080/gTunes/store/latest.rss, while the Atom feed can be accessed by
changing the .rss extension to .atom. If you access the RSS feed within Firefox, which
supports RSS, you’ll get a page rendered like the one in Figure 15-6.

Figure 15-6. Firefox rendering of an RSS feed

RSS and Atom Link Discovery
Another feature of most RSS and Atom-enabled browsers is the ability to automatically discover
feed links for the currently viewed page. For example, if you go to http://news.bbc.co.uk in Fire-
fox, you’ll notice a little blue feed icon appear in the address bar, as shown in Figure 15-7.

C H A P T E R 1 5 ■ W E B S E R V I C E S 477

Figure 15-7. Firefox RSS feed detection in action

It may seem like magic, but the way it works is that developers need to provide the neces-
sary HTML <meta> headers that link to the RSS or Atom feed. Only then will a browser such as
Firefox discover the feed. Luckily, the Feeds plugin provides support for doing just this using
the <feed:meta> tag. Say, for example, you wanted the RSS or Atom icon to appear in the
browser when users visited the gTunes store; you could quite easily enable this by modifying
the grails-app/views/layouts/storeLayout.gsp layout as shown in Listing 15-31.

Listing 15-31. Providing RSS and Atom Metadata

<html>
 <head>
 <feed:meta kind="rss"
 version="2.0"
 controller="store"
 action="latest"
 params="[format:'rss']"/>
 <feed:meta kind="atom"
 version="1.0"
 controller="store"
 action="latest"
 params="[format:'atom']"/>
 ...
 </head>
 ...
</html>

Now if you go to http://localhost:8080/gTunes/store, you’ll see the same browser
address bar links in Firefox as you did on the BBC! And with that, it is now time to look at a
different web services paradigm via the SOAP specifications.

478 C H A P T E R 1 5 ■ W E B S E R V I C E S

SOAP
SOAP is a specification for web services that originated in a joint Microsoft and IBM effort. SOAP
was originally an acronym for Simple Object Access Protocol; however, after discovering it wasn’t
simple or an access protocol and didn’t have anything to do with objects, the creators decided to
ditch the acronym, so now it’s just called SOAP.

Although REST is designed to be used with simple tools like your browser, SOAP as a
technology cannot be used effectively without good tooling and technological support. The
premise of SOAP is that, through the use of tools, you generate a web service descriptor using
the Web Services Description Language (WSDL). SOAP clients can then use the WSDL to
generate (using tooling support) a client that is capable of invoking the SOAP service in their
language of choice.

Although REST is all about resources and transferring XML representations of those
resources, SOAP is fundamentally a Remote Procedure Call (RPC) technology. Instead of being
an architectural pattern like REST, it encourages developers to continue to think in objects and
function calls. It just so happens that those objects and function calls are remote web services.

To support this RPC model, the SOAP specification includes the facility to describe within
the WSDL (in XML Schema) how objects should be marshaled to and from XML. Each data type
is described in XML Schema, and Java tools digest the WSDL and attempt to automatically
marshal objects to and from XML using the schema.

The primary goal of SOAP is to enable interoperability between different languages and
tools using XML as the transport medium, something that REST achieves just as well. How-
ever, SOAP also includes a number of complementary standards, under the WS-* banner,
that cover everything from security and transactions to management and discovery. Further-
more, unlike REST, which is primarily based on HTTP, SOAP doesn’t mandate the protocol
and could be used over a range of protocols including SMTP and FTP. All in all, it’s a lofty
goal; unfortunately, the various SOAP specifications have gone through a number of drafts,
and the implementors of the specifications have continually had to play catch-up.

To make matters worse, it has taken a while for SOAP vendors and users to decide what
the best practices are for implementing SOAP (see http://www.ibm.com/developerworks/
webservices/library/ws-whichwsdl/). Some early adopters settled on a pattern for binding
called RPC/encoded (rpc-enc) for the SOAP message bodies. Later, another pattern called
document/literal (doc-lit) became popular. Currently, four styles are in existence:

• RPC/encoded (rpc-enc)

• RPC/literal (rpc-lit)

• Document/encoded (doc-enc)

• Document/literal (doc-lit)

The result is that not all SOAP implementations can communicate with one another. To
mitigate this problem, a Web Services Interoperability (WS-I, http://www.ws-i.org/) group

C H A P T E R 1 5 ■ W E B S E R V I C E S 479

was formed that is designed to make sense of all the SOAP standards from the W3C and Oasis
and provide recommendations as to what can be used and what cannot because of problems
with interoperability. All in all, SOAP could be viewed as a bit of a mess, but the good news is
things can only get better, and the SOAP stacks are improving. There are advantages to using
SOAP over REST, including a defined specification for security called WS-Security. Addition-
ally, there are many existing adopters of SOAP, so it isn’t going away anytime soon.
Competition is good, and REST has helped drive massive improvements in the SOAP stacks as
they play catch-up to the simplicity provided by REST.

In the following sections, we’ll cover the different ways you can implement SOAP web ser-
vices in Grails and also how you can invoke SOAP web services from Grails.

SOAP Web Services via Plugins
If you are looking to expose a SOAP service with Grails, you are currently rather spoiled for
choice. Three plugins add the capability to expose SOAP services, each using a different under-
lying framework. The plugins are as follows:

• XFire Plugin (http://www.grails.org/XFire+plugin): The XFire plugin builds on the
original XFire project (http://xfire.codehaus.org/), allowing you to expose Grails
services as SOAP services. The XFire plugin is, as of this writing, the most mature of
the SOAP plugins.

• Axis 2 Plugin (http://www.grails.org/Apache+Axis2+Plugin): The Axis 2 plugin builds
on the Apache Axis 2 framework (Axis 1 was the first open source SOAP stack available
for Java). The plugin works by integrating the WSO2 Web Services for Spring project
(http://wso2.org/projects/wsf/spring) that integrates Axis 2 with Spring. Since Grails
is built on Spring, anything that can integrate with Spring can integrate with Grails.

• Metro Plugin (http://jax-ws-commons.dev.java.net/grails/): This is a plugin that inte-
grates with Metro (http://metro.dev.java.net/), the web services stack that is part of
the Glassfish umbrella project. The Metro plugin allows you to use standard JSR-224 Java
API for XML-based Web Services (JAX-WS) annotations on Grails service classes to
expose a SOAP web service.

So, you have several options. Each is pretty trivial to use, but we’ll take a look at how to go
about using the XFire plugin as an example. First you need to install the plugin by running the
grails install-plugin command as follows:

$ grails install-plugin xfire

Once the plugin is installed, it works by integrating with the Grails service classes that were
described in Chapter 11. The way it does this is by making each service available as a SOAP web
service under the /services URI. To ensure this URI is not dealt with by Grails, you need to add
a constraint to the default URL mapping in grails-app/conf/UrlMappings.groovy, as shown in
Listing 15-32.

480 C H A P T E R 1 5 ■ W E B S E R V I C E S

Listing 15-32. Changing the Grails URL Mappings to Exclude the /services URI

 "/$controller/$action?/$id?"{
 constraints {
 controller(matches:/.*[^(services)].*/)
 }
 }

As you can see in Listing 15-32, by using the matches constraint you can tell Grails not to
match the /services URI. Now, let’s try to create an example SOAP service by running the fol-
lowing command:

$ grails create-service com.g2one.gtunes.Album

You’ll end up with a new service class called AlbumService located in the grails-app/
services directory under the package com.g2one.gtunes. Now try to write a method in the
AlbumService that finds all the album titles for a given artist. Listing 15-33 shows the code for
the AlbumService class.

Listing 15-33. The AlbumService Class

package com.g2one.gtunes

class AlbumService {

 String[] findAlbumsForArtist(String artistName) {
 def artist = Artist.findByName(artistName)
 def albums = []
 if(artist) {
 albums = Album.findAllByArtist(artist)
 }
 return albums.title as String[]
 }
}

You can write a simple unit test that tests the behavior of this method using the generated
test in the test/unit directory called AlbumServiceTests. Listing 15-34 shows an example test
for the findAlbumsForArtist method.

C H A P T E R 1 5 ■ W E B S E R V I C E S 481

Listing 15-34. Testing the Service Code

import grails.test.*

void testFindAlbumsForArtist() {
 def artist = new Artist(name:"Beck")
 MockUtils.mockDomain(Artist, [artist])
 MockUtils.mockDomain(Album, [new Album(title:"Odelay", artist:artist),
 new Album(title:"Guero", artist:artist)])

 def albumService = new AlbumService()

 def results = albumService.findAlbumsForArtist("Beck")
 assertEquals 2,results.size()
 assertEquals "Odelay", results[0]

 results = albumService.findAlbumsForArtist("Rubbish")

 assertEquals 0, results.size()
}

With that done, it’s time to utilize the features of the XFire plugin. All you need to do to
expose the AlbumService as a SOAP web service is to add a single line to the AlbumService class
definition as follows:

static expose = ['xfire']

What this says is that you want to “expose” the AlbumService class to the world as a web
service using the XFire plugin. You’ll see this convention used elsewhere in Grails and its
plugins. For example, using the Remoting plugin (http://grails.org/Remoting+Plugin), which
allows you to expose Grails services over the Remote Method Invocation (RMI) standard, is
configured as follows:

static expose = ['rmi']

To test the SOAP web service, run Grails with the grails run-app command. The XFire
plugin uses the /services URI to map to SOAP web services. In the case of the AlbumService,
the full URI to the exposed web service is /services/album where the /album part is taken
from the name of the service. To get the WSDL for the AlbumService, you can access the URL
http://localhost:8080/gTunes/services/album?wsdl. The XFire plugin generates the WSDL for
each service automatically at runtime. The WSDL itself is a rather long and unwieldy XML format
that is far too long to list here—heaven knows how authors of SOAP books manage! Nevertheless,
Listing 15-35 shows a much shortened version of the XML you’re likely to get back.

482 C H A P T E R 1 5 ■ W E B S E R V I C E S

Listing 15-35. Example Generated WSDL

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://gtunes.g2one.com"
 xmlns:tns="http://gtunes.g2one.com"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soapenc11="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soapenc12="http://www.w3.org/2003/05/soap-encoding"
 xmlns:soap11="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://gtunes.g2one.com">
 <xsd:element name="findAlbumsForArtist">
 <xsd:complexType>
 ..
 </xsd:complexType>
 ..
 </xsd:element>
 ...
 </xsd:scema>
 ...
 </wsdl:types>
 ...
</wsdl:definitions>

As you can see, it’s not something that mere mortals should have to digest given that even
the namespace definitions take ten lines. Fortunately, SOAP is designed to be used in conjunc-
tion with good tools and frameworks—enter the Groovy-WS project.

Calling SOAP from the Client
Unlike REST, calling SOAP services requires jumping through several hoops. It is worth inves-
tigating what SOAP tools are available on your platform. On the Mac, there is the excellent
Mac SOAP Client project (http://code.google.com/p/mac-soapclient/) that provides a useful
graphical utility for testing SOAP web services. Figure 15-8 shows an example of its usage.
Notice how you can specify the URL to the WSDL, which is then automatically digested by the
Mac SOAP client.

C H A P T E R 1 5 ■ W E B S E R V I C E S 483

Figure 15-8. The Mac SOAP client

As you can see, you can specify in the drop-down the method of the SOAP service to exe-
cute and what parameters to pass. The tabs at the bottom allow you to see the outgoing request
and the response from the SOAP service. That’s all very useful for debugging your SOAP ser-
vices, but let’s look at how you can call a SOAP service from Groovy. To do so, you can use the
Groovy-WS project available at http://groovy.codehaus.org/GroovyWS.

■Note The current XFire plugin for Grails is based on the original XFire project, while Groovy-WS is based on
Apache CXF, which is the successor to XFire. As of this writing, there isn’t a CXF plugin for Grails. However, it can
be configured manually as described in the “Grails + CXF Example” tutorial at http://docs.codehaus.org/
pages/viewpage.action?pageId=85983334.

484 C H A P T E R 1 5 ■ W E B S E R V I C E S

Two downloads are available:

• The full JAR containing all the required dependencies for both the server and client por-
tions of Groovy-WS including the Servlet APIs. If you plan to use Groovy-WS from Grails,
then this JAR will not work because it embeds the Servlet APIs and its own version of
Jetty (Grails’ default container), which causes conflicts with any web application deploy-
ment (including Grails).

• A trimmed-down JAR that contains Groovy-WS and all its dependencies, excluding the
Servlet APIs and Jetty server.

For this example, we’ll demonstrate calling a SOAP service from the console, so either JAR
will do. Simply download one of the JARs, and then run the Groovy console with the following
command:

$ groovyConsole -cp /path/to/groovyws-all-0.3.1.jar

Now try the script in Listing 15-36.

Listing 15-36. Calling a SOAP Web Service

import groovyx.net.ws.WSClient

def proxy = new WSClient("http://localhost:8080/gTunes/services/album?wsdl",
 this.class.classLoader)

albums = proxy.findAlbumsForArtist("Tracy Chapman")

println "Found (${albums.string.size()}) Albums"
println "-------------"
albums.string.each {
 println it
}

The example in Listing 15-31 uses the Groovy-WS project’s dynamic SOAP client called
groovyx.net.ws.WSClient that automatically digests the WSDL and creates an appropriate
interface for interacting with it. Using the proxy created by WSClient, you can invoke the
findAlbumsForArtist method as if it were a regular method.

Oddly, the JAXB specification requires that array types in Java be returned as ArrayOf<Type>
definitions on the client. Hence, the findAlbumsForArtist method returns a type that is actually
ArrayOfString and not a String[] as you might expect. The intricacies of how SOAP and SOAP
frameworks marshal objects from one type to another from client to server is beyond the scope of
this book. To obtain the actual String[], you can call the ArrayOfStrings.getString() method,
as shown in the example in Listing 15-31. To wrap things up, Figure 15-9 shows what the result of
this script looks like in the Groovy console.

C H A P T E R 1 5 ■ W E B S E R V I C E S 485

Figure 15-9. Calling a SOAP service from the Groovy console

Summary
Once again, a lot of ground has been covered in this chapter. Now you should have a good
understanding of the options available to you when developing web services on the Grails plat-
form. Whether you choose REST or SOAP depends on a number of factors, some possibly
outside your control. Nevertheless, you are safe in the knowledge that there is good support for
both paradigms in Grails.

In your exploration of REST, you learned how to leverage Grails content negotiation fea-
tures to deal with REST requests. You explored how to marshal both XML and JSON and how to
invoke REST web services from Groovy and JavaScript clients. On the SOAP side, you discov-
ered how to expose a Grails service as a SOAP service and how to use the Groovy-WS project to
invoke SOAP web services. You even got to explore a little bit outside the realms of strict web
services by creating RSS and Atom feeds for the gTunes application.

There is still ground to be covered, however, and in the next chapter you’ll be learning how
to take advantage of Grails’ close integration with the Spring framework. Stay tuned.

487

■ ■ ■

C H A P T E R 1 6

Leveraging Spring

The ever-popular Spring Framework (http://www.springframework.org) was one of the first
frameworks to pioneer simplified development in the Java space. Promoting the use of Plain
Old Java Objects (POJOs), rather than objects tied to specific Java APIs such as EJB and JMS,
Spring shot to prominence and is now integrated into pretty much every popular Java open
source framework. However, it’s not just the open source software advocates who have been
quick to integrate Spring; major software vendors such as BEA (now part of Oracle) have cho-
sen to base their software on the Spring Framework.

In this chapter, we’ll cover what Spring is, how it relates to Grails, and how you can lever-
age it to do some pretty interesting things. Spring is a huge framework in itself that provides
wrappers and utility classes for pretty much every common problem found using Java technol-
ogy; hence, full coverage of Spring is beyond the scope of this book. Nevertheless, we’ll go
through a quick overview so you can garner a basic understanding of what Spring is.

Spring Basics
Spring is the engine that underpins Grails. At its core, it is a dependency injection container
that allows you to configure and wire together dependencies. When using raw Spring, this is
typically done in an XML format, as shown in Listing 16-1.

Listing 16-1. Spring’s XML Format

<beans>
 <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:hsql://localhost:9001"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </bean>

488 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

 <bean id="mySessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource" ref="myDataSource"/>
 <property name="mappingResources">
 <list>
 <value>product.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <value>
 hibernate.dialect=org.hibernate.dialect.HSQLDialect
 </value>
 </property>
 </bean>
</beans>

■Note In recent times, Spring has been extended to allow this type of configuration to be done using Java 5
annotations instead of XML. See http://static.springframework.org/spring/docs/2.5.x/reference/
beans.html#beans-annotation-config for further information.

The example in Listing 16-1 defines two Spring “beans” using the <bean> element:

• myDataSource: An instance of the org.apache.commons.dbcp.BasicDataSource class that
uses an HSQLDB database running on port 9001

• mySessionFactory: A Hibernate SessionFactory using the HSQLDialect and a single
Hibernate XML mapping file called product.hbm.xml

You set the properties of each bean using the <property> element. Notice how you can ref-
erence beans you have defined using the ref attribute:

<property name="dataSource" ref="myDataSource"/>

As an alternative to explicitly managing dependencies as in the previous example, you
can configure beans for “autowiring,” in which case Spring will try to wire your dependencies
together automatically. Autowiring can be configured using the type or the name on the <bean>
element:

<bean autowire="byType" ...>
 ...
</bean>

In this case, the type of class is used to calculate how beans are wired together; however,
you can also specify autowiring to happen by bean name using a value of byName for the
autowire attribute. See http://static.springframework.org/spring/docs/2.5.x/reference/
beans.html#beans-factory-autowire for more information.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 489

Once you have configured a bunch of beans, you can construct an org.springframework.
context.ApplicationContext instance. You can do this in a number of different ways. With
XML, you could use a ClassPathXmlApplicationContext instance that searches the classpath
for the given XML file name:

ApplicationContext applicationContext =
 new ClassPathXmlApplicationContext("beans.xml")

Once you have an ApplicationContext, you can query it for any configured beans, as
shown in Listing 16-2.

Listing 16-2. Using the ApplicationContext

SessionFactory sessionFactory = applicationContext.getBean("mySessionFactory")

With that rather simplistic introduction out the way, let’s look at the Spring and Grails combo.

Spring and Grails
You may well be wondering at this point how all this relates to Grails. Essentially, the way Grails
works is that it does what Spring’s XML does for you at runtime. Instead of you defining an XML
file with all the dependencies configured, Grails makes some decisions based on the conven-
tions in the project and automatically configures Spring using sensible defaults. However, all
Grails objects are essentially Spring beans that have been configured for autowiring by name.

Dependency Injection and Grails
The way Grails allows you to inject services into other Grails classes is powered by Spring.
Grails takes the class name and infers a bean name from it. For example, the com.g2one.
gtunes.StoreService becomes the bean called storeService. Then you can simply define a
property with the appropriate name and have it injected by Spring:

def storeService

If you prefer to look up beans explicitly, then you can always use the ApplicationContext
directly. All you have to do is implement the interface org.springframework.context.
ApplicationContextAware, and Grails will inject the ApplicationContext instance into your
class. Listing 16-3 shows the updates to the StoreController class needed to achieve this.

Listing 16-3. Implementing ApplicationContextAware

import org.springframework.context.*

class StoreController implements ApplicationContextAware {
 ApplicationContext applicationContext

 StoreService getStoreService() { applicationContext.getBean("storeService") }
 ...
}

490 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

A concern about Grails often raised by Spring users is that they will lose some control with-
out the fine-grained ability to micromanage each bean definition. This concern is unfounded
because although Grails does configure beans for you, you retain the ability to override any
bean definition and add your own bean definitions.

You can achieve this in a couple of ways. If you are used to Spring’s XML format and prefer
it, then you can create a file called grails-app/conf/spring/resources.xml and add your XML
bean definitions in the regular Spring way. However, the preferred way in Grails is to use the
Spring DSL provided by Grails. In the next section, you’ll learn about the Spring DSL and how
you can use it to manipulate Grails’ Spring configuration.

The BeanBuilder DSL
In early versions of Grails, a Grails application was configured by generating the necessary
Spring XML at runtime. The generated XML would then be parsed into bean definitions. All
in all, it was a rather clunky solution to the problem of creating Spring bean definitions at run-
time. Later, the Grails developers came up with a new way of configuring Spring encapsulated
by the grails.spring.BeanBuilder class.

Essentially, Grails searches the directory grails-app/conf/spring for any Groovy scripts.
By default, Grails creates a single script called resources.groovy in the grails-app/conf/spring
directory when you create a project. Figure 16-1 shows the resources.groovy script nested
snugly within the gTunes project.

Figure 16-1. The resources.groovy script

The resources.groovy script itself contains a single property called beans that is assigned a
block of code, as shown in Listing 16-4.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 491

Listing 16-4. The beans Property

beans = {
 // Place your Spring DSL code here
}

The beans property is equivalent to the root <beans> element in Spring XML. Now let’s find
out how to define a Spring bean using the BeanBuilder DSL.

Defining Spring Beans

To define a bean with BeanBuilder, you need to invoke a method with the bean class as the
first argument. For example, the myDataSource bean from Listing 16-1 can be defined using
BeanBuilder, as shown in Listing 16-5.

Listing 16-5. Defining a Bean

myDataSource(org.apache.commons.dbcp.BasicDataSource) { bean ->
 bean.destroyMethod = "close"
 driverClassName"org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:hsql://localhost:9001"
 username="sa"
 password=""
}

The Spring bean identifier is taken from the method name you invoke, while the class of
the bean is the first argument. The final argument to the method is a Groovy closure that lets
you define the properties of the bean.

The example in Listing 16-5 sets the driverClassName, url, username, and password proper-
ties of the myDataSource bean within the closure. Notice also that the closure’s first argument
allows you to set any property on the Spring org.springframework.beans.factory.support.
AbstractBeanDefinition class. The example in Listing 16-5 sets the destroyMethod of the bean
to close using this technique:

bean.destroyMethod = "close"

This is equivalent to the destroy-method attribute used in the <bean> element of Spring
XML. You may want to set a number of other useful properties in the bean argument, including
the following:

• autowire: Allows you to control whether a bean is a candidate for autowiring. This can be
set to true (defaults to autowiring by name), byName, byType, or byConstructor.

• abstract: Whether this bean is an abstract bean (see the section “Abstract Beans”).

• dependsOn: Specify the names of the beans that the bean depends on as a List. Spring
will ensure dependent beans are initialized first.

• destroyMethod: The method to call when the bean is destroyed, because of container
shutdown.

492 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

• factoryBean: The bean that is used to construct instances of this bean (see the section
“Factory Beans”).

• initMethod: The method to call when the bean is initialized.

• parent: The parent of this bean definition (see the section “Abstract Beans”).

• scope: The scope of the bean (see the section “Bean Scopes”).

Each of these properties allows you to control the manner in which a bean is con-
structed and disposed of. One thing to note is that the code in Listing 16-5 works because
the BasicDataSource class has a default constructor. If there is no default constructor, then
you can pass arguments to the bean’s constructor by simply appending them after the
class name:

helloWorldString(String, "hello world!")

In this case, a new java.lang.String will be created as a bean called helloWorldString
using the String(String) constructor. Also, BeanBuilder supports Groovy’s additional default
constructor that takes a Map that allows you to set properties on the instance after it is con-
structed. This is quite common in GORM; for example, to create a new Album instance, you can
do the following:

new Album(title:"The Bends", genre:"Alternative")

To do the same thing with BeanBuilder, you can do the following:

theBendsAlbum(Album, title:"The Bends", genre:"Alternative")

As you can see from the previous example, by specifying a sequence of named arguments
after the class, you can set properties on the bean.

Overriding Spring Beans

Any Spring bean that is automatically defined by Grails can be overridden by creating a bean of
the same name in the grails-app/conf/spring/resources.groovy file or the equivalent XML
version. You can find a complete list of names of the beans that Grails configures automatically
in the “Plugins” section of the reference documentation for Grails at http://grails.org/doc/
1.1.x.

As you learned in Chapter 13, Grails itself is configured by plugins, and each plugin typi-
cally defines a doWithSpring closure that uses BeanBuilder syntax to configure Spring in some
way. The following are some of the more critical beans that Grails configures that you may
want to consider overriding:

• dataSource: The javax.sql.DataSource instance that represents the connection to the
database.

• jspViewResolver: The org.springframework.web.servlet.ViewResolver instance that
Grails uses to resolve GSP or JSP views. You can override this bean to integrate custom
view technologies, such as FreeMarker (http://freemarker.org/), into Grails.

• localeResolver: The org.springframework.web.servlet.LocaleResolver instance that
Grails uses to resolve the Locale of an incoming request.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 493

• messageSource: The org.springframework.context.MessageSource instance that Grails
uses to resolve i18n messages (discussed in Chapter 7).

• multipartResolver: The org.springframework.web.multipart.MultipartResolver
instance that Grails uses to handle file uploads (discussed in Chapter 4).

• sessionFactory: The org.hibernate.SessionFactory instance used to configure
Hibernate.

• transactionManager: The org.springframework.transaction.PlatformTransactionManager
instance Grails uses to manage transactions using Spring’s transaction abstraction (dis-
cussed in Chapter 11).

As an example, say you wanted to override the dataSource bean to use a C3PO (http://
sourceforge.net/projects/c3p0) connection pool. All you have to do is provide a bean in the
grails-app/conf/spring/resources.groovy file with the corresponding name, as shown in
Listing 16-6.

Listing 16-6. Overriding the dataSource Bean

dataSource(com.mchange.v2.c3p0.ComboPooledDataSource) { bean ->
 bean.destroyMethod = "close"
 driverClass"org.hsqldb.jdbcDriver"
 jdbcUrl="jdbc:hsqldb:hsql://localhost:9001"
 user="sa"
 password=""
}

Factory Beans

A common pattern in Spring is the factory bean, essentially a bean that constructs another
bean. In Spring, factory beans are encapsulated by the org.springframework.beans.factory.
FactoryBean interface, as shown in Listing 16-7.

Listing 16-7. The FactoryBean Interface

public interface FactoryBean {
 Object getObject() throws Exception;
 Class getObjectType();
 boolean isSingleton();
}

You’ve already seen a factory bean being used in the Spring XML in Listing 16-1.
The org.springframework.orm.hibernate3.LocalSessionFactoryBean class is a FactoryBean
instance that constructs a Hibernate org.hibernate.SessionFactory instance. The
LocalSessionFactoryBean class implements the FactoryBean interface so that the
getObject() method returns a fully constructed SessionFactory instance.

In other words, although the type of the factory bean is LocalSessionFactoryBean, the
finally constructed bean is actually an instance of the SessionFactory class. Listing 16-8 shows
an example of using the LocalSessionFactoryBean instance with BeanBuilder.

494 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

Listing 16-8. Using LocalSessionFactoryBean with BeanBuilder

mySessionFactory(org.springframework.orm.hibernate3.LocalSessionFactoryBean) {
 dataSource = myDataSource
 mappingResources = ['product.hbm.xml']
 hibernateProperties = ['hibernate.dialect':'org.hibernate.dialect.HSQLDialect']
}

There are a few interesting things to note about the example in Listing 16-8. First, as you
can see, you can reference other beans simply by referencing the name of the bean:

dataSource = myDataSource

Here, the myDataSource bean that was defined in Listing 16-5 is referenced. You can even
reference beans that haven’t been defined yet or that are defined by Grails. For example, to ref-
erence the dataSource bean constructed by Grails instead, you can use the ref method:

 dataSource = ref("dataSource")

Second, note the usage of Groovy Map and List literals in Listing 16-8 when defining bean
properties:

mappingResources = ['product.hbm.xml']
hibernateProperties = ['hibernate.dialect':'org.hibernate.dialect.HSQLDialect']

Compared to the Spring XML, the Groovy syntax is far more concise and readable. Now,
typically factory beans do implement the FactoryBean interface defined earlier, but it is impor-
tant to note that you don’t have to implement this interface to use factory beans. By using the
factoryMethod property, you can implement similar logic. For example, Listing 16-9 constructs
a java.util.Calendar instance that is prototyped. This means that a new bean is constructed
every time you call the getBean(String) method of the ApplicationContext class or the bean is
wired into another bean (you’ll learn more in the “Bean Scopes” section).

Listing 16-9. Using the factoryMethod Property

calendarBean(java.util.Calendar) { bean ->
 bean.factoryMethod = "getInstance"
 bean.scope = "prototype"
}

Notice how in Listing 16-9 the factoryMethod property of the bean argument is used to
specify that in order to construct a Calendar instance the static getInstance() method must
be called. You can even use other beans as factories. For example, to create another bean
from the calendarBean in Listing 16-9, you can simply pass the name of the bean as an argu-
ment to the bean-defining method:

USCalendar(calendarBean) {
 firstDayOfWeek = Calendar.SUNDAY
}

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 495

frenchCalendar(calendarBean) {
 firstDayOfWeek = Calendar.MONDAY
}

In this example, two new beans are defined, called USCalendar and frenchCalendar, that
both use the calendarBean as their factory and set a different firstDayOfWeek property for each
bean. The fun with factory beans doesn’t end there. You can also define a method that needs to
be called to construct the bean:

timeZoneBean(calendarBean:"getTimeZone")

In this example, a new bean called timeZoneBean will be constructed by invoking the get-
TimeZone() method of the calendarBean instance.

Inner Beans

Occasionally you may need to define a bean that you don’t want to expose to clients because it
relates to the internal workings of another bean. To achieve this, you can use inner beans. To
define an inner bean, you can assign a closure to a property where the first argument to the clo-
sure is the bean type. For example, if you wanted to define the myDataSource bean as an inner
bean of the mySessionFactory bean, you could do so, as shown in Listing 16-10.

Listing 16-10. Using Inner Beans

mySessionFactory(org.springframework.orm.hibernate3.LocalSessionFactoryBean) {
 dataSource = { org.apache.commons.dbcp.BasicDataSource bd ->
 driverClassName"org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:hsql://localhost:9001"
 username="sa"
 password=""
 }
 mappingResources = ['product.hbm.xml']
 hibernateProperties = ['hibernate.dialect':'org.hibernate.dialect.HSQLDialect']
}

With the example in Listing 16-10, only the mySessionFactory bean will be exposed
because the dataSource property has been defined using an inner bean.

Abstract Beans

An abstract bean in Spring is more akin to the template pattern than an abstract class in Java.
Essentially, you can define an incomplete, or abstract, bean that provides a set of common
properties but that is not itself instantiated. Other beans can then extend from the abstract
bean and inherit any properties defined on said abstract bean.

For example, consider the case where you are defining multiple data sources. Each data
source uses the same driver, so it would be painful and would waste time to have to repeat
this information over and over. Instead, you could define an abstract bean that sets the
driverClassName property, and any other common properties, and then create individual
beans that use the abstract bean as a parent. Listing 16-11 shows an example.

496 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

Listing 16-11. Using Abstract Beans

dataSourceCommons {
 driverClassName"org.hsqldb.jdbcDriver"
 username="sa"
 password=""
}
firstDataSource(org.apache.commons.dbcp.BasicDataSource) { bean ->
 bean.parent = dataSourceCommons
 url="jdbc:hsqldb:hsql://localhost:9001"
}
secondDataSource(org.apache.commons.dbcp.BasicDataSource) { bean ->
 bean.parent = dataSourceCommons
 url="jdbc:hsqldb:hsql://localhost:9002"
}

In Listing 16-11, the code defines an abstract bean called dataSourceCommons. BeanBuilder
assumes that if you don’t pass a class name as the first argument, then the bean is abstract.
Alternatively, if you have a bean definition that accepts a class name and you want it to be
abstract, then you can set the abstract property of the bean argument to true:

dataSourceCommons(org.apache.commons.dbcp.BasicDataSource) { bean ->
 bean.abstract = true
 driverClassName"org.hsqldb.jdbcDriver"
 username="sa"
 password=""
}

Returning to Listing 16-11, the remaining code then constructs a further two beans called
firstDataSource and secondDataSource, each of which sets the parent property of the bean
argument to dataSourceCommons. This allows these beans to inherit the properties set on the
abstract bean dataSourceCommons.

Bean Scopes

By default, all Spring beans are singleton scoped. This means that there is only ever one
instance of the bean within the Spring container. As you saw in the “Factory Beans” section,
beans can also be prototype scoped. In this case, a new instance of the bean is created every
time the bean is requested. Several other scopes are available, listed here in order of their
longevity:

• prototype: A new bean is created every time the getBean(name) method of the
ApplicationContext is called or every time the bean is injected into another bean.

• request: A new bean is created for each request.

• flash: A new bean is created and stored in flash scope, making it available for the current
and next requests only.

• flow: When using Web Flows (see Chapter 9), a new bean is created and placed into flow
scope. The bean is disposed of when the flow terminates.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 497

• conversation: When using Web Flows, a new bean is created and placed in conversation
scope. The bean is disposed of when the conversation ends.

• session: A new bean is created and stored in the client session. The bean is disposed of
when the session is invalidated.

• singleton: A single bean exists for the life of the Spring container.

■Tip You can even create your own scopes; see the section on custom scopes in the Spring user guide
at http://static.springframework.org/spring/docs/2.5.x/reference/beans.html#beans-
factory-scopes-custom.

As you’ve already seen, to register a bean that utilizes one of the previously mentioned
scopes, you need to set the scope property of the bean argument:

frenchCalendar(calendarBean) { bean ->
 bean.scope = "prototype"
 firstDayOfWeek = Calendar.MONDAY
}

Dynamically Creating Beans

The major benefit of BeanBuilder in comparison to Spring’s static XML format is that because
the BeanBuilder DSL is Groovy code, you can create beans dynamically, on the fly. For exam-
ple, it is often useful to configure different beans for different environments. This is nontrivial
to achieve in raw Spring. You often have to use a combination of FactoryBean instances and the
org.springframework.beans.factory.config.PropertyPlaceholderConfigurer class to substi-
tute different values for different environments in your build.

With BeanBuilder, this isn’t really necessary. Take, for example, the mySessionFactory
bean you saw earlier. You could configure the SessionFactory differently for development than
for production. Listing 16-12 shows an example.

Listing 16-12. Dynamically Configuring Beans

def hibProps = ['hibernate.dialect':'org.hibernate.dialect.HSQLDialect']
if(grails.util.GrailsUtil.isDevelopmentEnv()) {
 hibProps."hibernate.show_sql" = "true"
 hibProps."hibernate.format_sql" = "true"
}
mySessionFactory(org.springframework.orm.hibernate3.LocalSessionFactoryBean) {
 dataSource = myDataSource
 mappingResources = ['product.hbm.xml']
 hibernateProperties = hibProps
}

498 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

As you can see from Listing 16-12, using regular Groovy code you can check whether you’re
in the development environment and, if so, set up some properties that are useful for develop-
ment only. In the example in Listing 16-12, the code configures the hibernate.show_sql and
hibernate.format_sql properties, which allow you to debug Hibernate SQL, to be enabled only
in the development environment.

However, it is not just the properties of the beans you can configure dynamically. Thanks
to Groovy’s ability to invoke methods using strings, you can easily create the beans themselves
dynamically (see Listing 16-13).

Listing 16-13. Dynamic Bean Creation

def dataSources = [firstDataSource: 9001, secondDataSource:9002]

dataSources.each { name, port ->
 "$name"(org.apache.commons.dbcp.BasicDataSource) { bean ->
 bean.destroyMethod = "close"
 driverClassName"org.hsqldb.jdbcDriver"
 url="jdbc:hsqldb:hsql://localhost:$port"
 username="sa"
 password=""
 }
}

As you can see from Listing 16-13, which uses a map of data source names and ports, you
can create bean names dynamically by invoking the bean-defining method using a String:

 "$name"(org.apache.commons.dbcp.BasicDataSource) { bean ->

This code will create two beans called firstDataSource and secondDataSource using the
keys of the dataSources map.

Spring in Action
Now that you’ve learned what can be achieved with BeanBuilder, let’s put some of that knowl-
edge to work and have some fun with Spring. We’ll take you through a couple of examples that
will build on the gTunes application. The first involves taking advantage of Spring’s excellent
support for the JMS API.

Integrating JMS with Spring JMS
What many people fail to realize when evaluating Spring is that it is far more than just a
dependency injection container. It is an entire abstraction layer over Java EE standards and
popular open source software, which promotes POJO programming. The idea behind Spring
is that you should rarely, if ever, have to refer to framework code in your own code. The
Spring JMS support is one such an example, where Spring allows you to define Message-
Driven POJOs (see http://static.springframework.org/spring/docs/2.5.x/
reference/jms.html#jms-asynchronousMessageReception).

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 499

In the following sections, we’ll show how you can use BeanBuilder to set up Spring’s sup-
port for Message-Driven POJOs with JMS. The functionality you’re going to implement will
allow users to subscribe to a particular Artist. When the Artist releases a new Album, an e-mail
notification needs to be sent to all subscribed users. The mechanics of this are going to be
implemented using asynchronous, reliable messaging. But before you can do that, you’re
going need a JMS container. A popular open source solution is the Apache ActiveMQ project.

Setting up ActiveMQ

To get started using ActiveMQ, download the distribution from http://activemq.apache.org/,
and extract it somewhere locally. Figure 16-2 shows an example of the ActiveMQ distribution
once installed.

Figure 16-2. The ActiveMQ installation directory

■Tip You’ll find detailed installation instructions covering multiple platforms on the ActiveMQ web site at
http://activemq.apache.org/getting-started.html.

Now to get started using ActiveMQ, you need to start up the ActiveMQ container. You can
do this by running the bin/activemq command or one of the OS-specific commands such as
bin/macosx/activemq, as shown in Listing 16-14.

500 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

Listing 16-14. Starting ActiveMQ

$ activemq start
Starting ActiveMQ Broker...

You can verify that ActiveMQ has started up correctly by opening the ActiveMQ web con-
sole, which you can typically find on port 8161 at the URL http://localhost:8161/admin/.
Figure 16-3 shows an example of the ActiveMQ web console.

Figure 16-3. The ActiveMQ web console

Configuring ActiveMQ with BeanBuilder

With ActiveMQ running, it’s now time to configure the gTunes application so that it can use
the ActiveMQ instance. A prerequisite to using JMS is obtaining a reference to a javax.jms.
ConnectionFactory instance. ActiveMQ provides an implementation of this interface through
the org.apache.activemq.ActiveMQConnectionFactory class.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 501

Before you can use it, you need to add the necessary JAR files to the lib directory of the
gTunes application. Figure 16-4 shows the activemq-core-5.0.0.jar file and the necessary
geronimo JARs, which you can obtain from the ACTIVEMQ_HOME/lib directory, in place.

Figure 16-4. The ActiveMQ JAR files

■Tip There is actually an ActiveMQ plugin (http://grails.org/ActiveMQ+Plugin) for Grails that per-
forms all the setup you can see in this section using a Grails plugin. But since you’re learning about Spring,
we’ll continue to describe the manual way!

The next step is to open the grails-app/conf/spring/resources.groovy file and register
a new Spring bean that points to the URL of the ActiveMQ container. Listing 16-15 shows the
necessary BeanBuilder code.

Listing 16-15. Configuring the JMS ConnectionFactory for ActiveMQ

jmsFactory(org.apache.activemq.ActiveMQConnectionFactory) {
 brokerURL = "tcp://localhost:61616"
}

502 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

The example in Listing 16-15 sets up a single bean called jmsFactory that is an instance
of the ActiveMQConnectionFactory class. It also sets the brokerURL property to the location of
the ActiveMQ server, which by default runs on port 61616. One thing that is pretty common,
though, is to use a pool of ConnectionFactory instances for sending messages, in the same way
as you would pool a database java.sql.Connection. You can easily achieve this by using the
org.apache.activemq.pool.PooledConnectionFactory class, as shown in Listing 16-16.

Listing 16-16. Using a ConnectionFactory Pool

jmsFactory(org.apache.activemq.pool.PooledConnectionFactory) { bean ->
 bean.destroyMethod = "stop"
 connectionFactory = { org.apache.activemq.ActiveMQConnectionFactory cf ->
 brokerURL = "tcp://localhost:61616"
 }
}

As you can see in Listing 16-16, the code defines the connectionFactory property of the
PooledConnectionFactory class using an inner bean definition. You learned about inner beans
in the section of that name earlier in the chapter.

Sending JMS Messages with Spring

To send JMS messages using the jmsFactory bean, you can take advantage of Spring’s excellent
org.springframework.jms.core.JmsTemplate class that provides helper methods for sending
messages. You can define the JmsTemplate as another Spring bean, as shown in Listing 16-17.

Listing 16-17. Defining the jmsTemplate Bean

jmsTemplate(org.springframework.jms.core.JmsTemplate) {
 connectionFactory = jmsFactory
}

Notice how in Listing 16-17 the connectionFactory property is referencing the jmsFactory
bean you defined earlier. Now you need to consider how to send a notification when a new
Album is created. A good way to achieve this is to use a GORM event, as described in Chapter 10.

A useful thing about domain classes in Grails is that they too are Spring beans that can
participate in autowiring. So, to get a reference to the jmsTemplate from the Album class, you
simply need to define a property within the Album domain class that matches the bean name.
Listing 16-18 shows the updates to the Album domain class.

Listing 16-18. Injecting the jmsTemplate into the Album Domain Class

class Album {
 ...
 transient jmsTemplate
}

You’ll notice that in Listing 16-18 the jmsTemplate property is defined as transient. This is
to avoid the JmsTemplate instance being serialized along with the Album class when it is sent in

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 503

a JMS message or stored in a flow. Now you can define an afterInsert event, which is fired
after an Album instance is inserted into the database that sends a JMS message containing the
Album instance. Listing 16-19 shows the necessary code.

Listing 16-19. Sending a JMS Message

class Album {
 ...
 transient afterInsert = {
 try {
 jmsTemplate.convertAndSend("artistSubscriptions", this)
 }
 catch(e) {
 log.error "Error sending JMS message: ${e.message}",e
 }
 }
}

As you can see from Listing 16-19, the afterInsert event uses the JmsTemplate
class’ convertAndSend method to send the current Album instance to a JMS Queue called
artistSubscriptions. Additionally, if an exception occurs, such as when the JMS container
is down, the exception is logged at the error level.

If you now attempt to create a new Album using the administrative tools you created in
Chapter 14, a JMS message will be sent when you do so. If you visit the ActiveMQ web console
and click the Queues section, you’ll notice that the artistSubscription queue has appeared in
the list, as shown in Figure 16-5.

Figure 16-5. The available JMS queues

Consuming JMS Messages with Spring

At this point, you need to consider how to consume the JMS messages that have been sent.
Luckily, Spring provides some excellent ways to achieve this too. A central concept is the
notion of Message-Driven POJOs.1 A Message-Driven POJO is a normal Java class that has a
method that is triggered by a JMS message. To implement a Message-Driven POJO, you can

1. There is an excellent introductory article on Message-Driven POJOs on the SpringSource Team blog at
http://blog.springsource.com/2006/08/11/message-driven-pojos/.

504 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

use the org.springframework.jms.listener.adapter.MessageListenerAdapter class, which is
capable of listening for JMS messages and delegating the message to another bean.

A nice thing about Grails’ Spring integration is that you can reuse the beans Grails defines
automatically within your own bean definitions. So, for example, if you wanted to create a
MessageListenerAdapter that delegates to a new method called onNewAlbum in the com.g2one.
gtunes.StoreService, you can do so using the code shown in Listing 16-20.

Listing 16-20. Using MessageListenerAdapter to Delegate to a Grails Service

import org.springframework.jms.listener.adapter.*
...
jmsMessageListener(MessageListenerAdapter, ref("storeService")) {
 defaultListenerMethod = "onNewAlbum"
}

Notice how in Listing 16-20 the code uses the ref(beanName) method to create a reference to
the storeService bean, which is one of the beans Grails automatically creates, and passes it to the
constructor of the MessageListenerAdapter bean. If you don’t specify the defaultListenerMethod
property, then Spring will try to delegate to a method called handleMessage. That may be fine, but
to increase the clarity of your code, you can change this as the example in Listing 16-20 does.

For the jmsMessageListener to receive messages, you need to set up an instance of the
org.springframework.jms.listener.DefaultMessageListenerContainer class as a Spring bean. The
DefaultMessageListenerContainer class works with the JMS ConnectionFactory to monitor for JMS
messages. Listing 16-21 shows how to configure an instance of DefaultMessageListenerContainer
with BeanBuilder.

Listing 16-21. Configuring a DefaultMessageListenerContainer Instance

jmsContainer(org.springframework.jms.listener.DefaultMessageListenerContainer) {
 connectionFactory = jmsFactory
 destinationName = "artistSubscriptions"
 messageListener = jmsMessageListener
 transactionManager = ref("transactionManager")
 autoStartup = false
}

As you can see from Listing 16-21, the destinationName is set to the same destination
used by the jmsTemplate in Listing 16-19. The messageListener property is set to the
jmsMessageListener bean you created earlier, and, interestingly, the transactionManager
property is set to refer to Grails’ built-in transactionManager instance.

The importance of this will become clear later; for now the last thing to note is that
autoStartup is set to false. This is done to make sure Grails has sufficient time to load before
the consumer starts receiving messages from the JMS container. The downside is that you have
to take responsibility for starting the jmsContainer bean yourself. To do this, you can use the
grails-app/conf/BootStrap.groovy class’ init method. Listing 16-22 shows the changes to
BootStrap.groovy to achieve this.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 505

Listing 16-22. Starting the jmsContainer Instance

class BootStrap {

 def jmsContainer
 def init = { servletContext ->
 ...
 log.info "Starting JMS Container"
 jmsContainer.start()
 }
}

As with other Grails classes, the BootStrap class can obtain references to any Spring bean
simply by defining a property that matches the bean name. In Listing 16-22, a jmsContainer
property is defined, resulting in the DefaultMessageListenerContainer instance being injected,
at which point the start() method can be called. To complete the picture, you need to imple-
ment the onNewAlbum method within the com.g2one.gtunes.StoreService class. For now,
simply provide an implementation that prints the album title, as shown in Listing 16-23.

Listing 16-23. A Simple onNewAlbum Implementation

class StoreService {
 ...
 void onNewAlbum(Album album) {
 println "-- Got album $album.title"
 }
}

Now if you create a new Album instance, a JMS message will be sent to the ActiveMQ server
and placed on the queue. The Spring jmsContainer bean is already listening for messages, and
as soon as it gets one from the queue, the onNewAlbum message will be triggered, and a message
such as the following will be printed:

-- Got album The Bends

All of this happens asynchronously and so doesn’t interfere with the actual workflow of
creating an Album instance. Spring is also doing a lot of magic under the surface to automati-
cally translate what is in fact a javax.jms.ObjectMessage instance into the correct arguments to
pass to the onNewAlbum method. The StoreService itself, you’ll notice, has no direct references
to the JMS APIs. It is a simple POJO (or POGO, as the case may be).

Enabling Artist Subscriptions

At the moment, the onNewAlbum method is not doing anything of great value. To rectify this sit-
uation, you first need to implement the capability for users to subscribe to a particular Artist.
There is already a com.g2one.gtunes.Subscription domain class that models subscriptions. Of

506 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

course, the Subscription needs to know what Artist it relates to. To do this, you can create a
subclass of Subscription called ArtistSubscription by running the grails create-domain-
class command:

$ grails create-domain-class com.g2one.gtunes.ArtistSubscription

After adding a new enum value called ARTIST to the SubscriptionType enum in the parent
class, the ArtistSubscription implementation looks like Listing 16-24.

Listing 16-24. The ArtistSubscription Class

package com.g2one.gtunes

class ArtistSubscription extends Subscription {

 ArtistSubscription() {
 type = SubscriptionType.ARTIST
 }

 static belongsTo = [artist:Artist]
}

With the ArtistSubscription class in place, you need to consider how to allow users to
subscribe. To do so, you can develop a GSP template that renders a “Subscribe” link if the user
is not subscribed or an “Unsubscribe” link if they are. Listing 16-25 shows the code for the
grails-app/views/artist/_subscribe.gsp template.

Listing 16-25. The subscribe Template

<jsec:isLoggedIn>
 <div id="subscription">
 <gtunes:isSubscribed artist="${artist}">
 <g:remoteLink update="subscription"
 controller="artist"
 action="unsubscribe"
 id="${artist.id}">Unsubscribe</g:remoteLink> -
 Click here to no longer receive e-mail updates when
 ${artist.name} release a new album.
 </gtunes:isSubscribed>
 <gtunes:notSubscribed artist="${artist}">
 <g:remoteLink update="subscription"
 controller="artist"
 action="subscribe"
 id="${artist.id}">Subscribe</g:remoteLink>
 Click here to receive e-mail updates when
 ${artist.name} release a new album.
 </gtunes:notSubscribed>
 </div>
</jsec:isLoggedIn>

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 507

The template in Listing 16-25 uses the <jsec:isLoggedIn> tag to ensure that the subscrip-
tion controls are displayed only if the user is logged in. Then it uses two tags that haven’t been
created yet: <gtunes:isSubscribed> and <gtunes:notSubscribed>. The idea behind these two
tags is to render different markup according to whether the user is subscribed. In Listing 16-25,
the tags render either a “Subscribe” or “Unsubscribe” <g:remoteLink> tag that makes an Ajax
call and updates the surrounding <div>.

To implement these tags, you need to create a new tag library. You can do so by running
the grails create-tag-lib command:

$ grails create-tag-lib com.g2one.gtunes.Subscription

This command will create a new tag library at the location grails-app/taglib/com/g2one/
gtunes/SubscriptionTagLib.groovy. Listing 16-26 shows the template for the SubscriptionTagLib
class.

Listing 16-26. The SubscriptionTagLib Implementation

package com.g2one.gtunes

class SubscriptionTagLib {
 static namespace = "gtunes"

}

Notice that the SubscriptionTagLib in Listing 16-26 is using the gtunes namespace. To
implement the <gtunes:isSubscribed> tag, you need a way to check whether a user is sub-
scribed. You can do so by writing a utility method that uses GORM to query the database.
Listing 16-27 shows a possible implementation.

Listing 16-27. Checking Whether a User Is Subscribed

boolean checkSubscribed(user, artist) {
 user && artist &&
 ArtistSubscription.findByUserAndArtist(user, artist, [cache:true])
}

Using the ArtistSubscription class you created earlier, the code in Listing 16-27 uses a
dynamic finder called findByUserAndArtist to locate the Subscription instance. Note that the
code uses the cache:true argument so that the query is cached, because it is likely to be used
quite frequently. With the checkSubscribed method in place, writing a couple of tags to take
advantage of it is pretty easy. Listing 16-28 shows the code for the <gtunes:isSubscribed> and
<gtunes:notSubscribed> methods.

Listing 16-28. Implementing the SubscriptionTagLib Tags

def isSubscribed = { attrs, body ->
 if(checkSubscribed(request.user, attrs.artist)) {
 out << body()
 }

508 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

}
def notSubscribed = { attrs, body ->
 if(!checkSubscribed(request.user, attrs.artist)) {
 out << body()
 }
}

Of course, testing is crucial too. You could test the tag library using the GroovyPagesTestCase
class you used to test the AlbumArtTagLib. However, since the SubscriptionTagLib is mainly about
branching logic and not markup rendering, it is probably easier to take advantage of the
grails.test.TagLibUnitTestCase class that lets you unit test tag libraries but not the markup
they generate. Simply create a new a unit test in the test/unit/com/g2one/gtunes directory
called SubscriptionTagLibTests that extends from the TagLibUnitTestCase class, as shown in
Listing 16-29.

Listing 16-29. Using the TagLibUnitTestCase Class

package com.g2one.gtunes

class SubscriptionTagLibTests extends grails.test.TagLibUnitTestCase {
 ...
}

You can then write a couple of simple tests that check the behavior of the <gtunes:
isSubscribed> and <gtunes:notSubscribed> tags. Listing 16-30 shows two tests called
testIsSubscribed and testNotSubscribed.

Listing 16-30. Testing the SubscriptionTagLib Class

void testIsSubscribed() {
 mockDomain(ArtistSubscription)

 def artist = new Artist(name:"Kings of Leon")
 def user = new User(login:"testuser")
 new ArtistSubscription(artist:artist, user:user).save()

 tagLib.request.user = user
 tagLib.isSubscribed(artist:artist) {
 "subscribed"
 }
 tagLib.notSubscribed(artist:artist) {
 "notsubscribed"
 }

 assertEquals "subscribed", tagLib.out.toString()
}

void testNotSubscribed() {

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 509

 mockDomain(ArtistSubscription)

 def artist = new Artist(name:"Kings of Leon")
 def user = new User(login:"testuser")

 tagLib.request.user = user
 tagLib.isSubscribed(artist:artist) {
 "subscribed"
 }
 tagLib.notSubscribed(artist:artist) {
 "notsubscribed"
 }

 assertEquals "notsubscribed", tagLib.out.toString()
}

A closure can be passed as the body of the tag, as long as it returns a String representing
the body contents. In Listing 16-30, either “subscribed” or “notsubscribed” will be written to
the mock out variable. OK, with the tests out of the way, the next thing to do is to modify the
grails-app/views/artist/_artist.gsp template to include the new _subscribe.gsp template.
Listing 16-31 shows the necessary code changes highlighted in bold.

Listing 16-31. Updates to the _artist.gsp Template

<div id="artist${artist.id}" class="artistProfile" style="display:none;">
 <div class="artistDetails">
 ...
 <g:render template="subscribe" model="[artist:artist]"></g:render>
 </div>
</div>

Now when you visit one of the artist pages, you’ll see a new “Subscribe” link, as shown in
Figure 16-6.

Figure 16-6. The “Subscribe” link

510 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

Unfortunately, when you click the link, you’ll receive a “Page not found” 404 error. To
resolve this issue, you need to implement the server logic for the subscribe and unsubscribe
actions that the <g:remoteLink> tags in Listing 16-25 refer to. Open the ArtistController class,
and add a new action called subscribe that persists a new ArtistSubscription if one doesn’t
already exist. Listing 16-32 shows an example implementation.

Listing 16-32. Implementing the subscribe Action

def subscribe = {
 def artist = Artist.get(params.id)
 def user = request.user
 if(artist && user) {
 def subscription = ArtistSubscription.findByUserAndArtist(user, artist)
 if(!subscription) {
 new ArtistSubscription(artist:artist, user:user).save(flush:true)
 }
 render(template:"/artist/subscribe", model:[artist:artist])
 }
}

As you can see from the code in Listing 16-32, the subscribe action reuses the
_subscribe.gsp template to render an Ajax response to the client. The logic in
the SubscriptionTagLib deals with the rest. To add the unsubscribe logic, you
simply need to delete the ArtistSubscription instance if it exists, as shown in
Listing 16-33.

Listing 16-33. Implementing the unsubscribe Action

def unsubscribe = {
 def artist = Artist.get(params.id)
 def user = request.user
 if(artist && user) {
 def subscription = ArtistSubscription.findByUserAndArtist(user, artist)
 if(subscription) {
 subscription.delete(flush:true)
 }
 render(template:"/artist/subscribe", model:[artist:artist])
 }
}

Finally, you need to add a couple of URL mappings in order to expose the subscribe and
unsubscribe actions, as shown in Listing 16-34.

Listing 16-34. The Subscriptions URL Mappings

 "/artist/subscribe/$id"(controller:"artist", action:"subscribe")
 "/artist/unsubscribe/$id"(controller:"artist", action:"unsubscribe")

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 511

Implementing Asynchronous E-mail Notifications

Now with users able to subscribe to their favorite artists, it is time to consider the onNewAlbum
method of the StoreService class again. Whenever a JMS message is received, you’re going to
need to find all the subscribers for the Artist associated with the passed Album and send an
e-mail to each one.

To do this, you first need a reference to the mailService bean, provided by the Mail plugin
installed in Chapter 12, which can be obtained by defining a property of the same name:

def mailService

Next, you need to obtain a list of all the User instances subscribed to the Artist associated
with the Album. To do this, you can get a reference to the Artist via the artist property:

def artist = album.artist

Then use a criteria query to obtain a list of users:

def users = ArtistSubscription.withCriteria {
 projections {
 property "user"
 }
 eq('artist', artist)
}

Notice the use of the projections block to specify that you want the result to contain the
user property of each ArtistSubscription found. Once you have a list of users, you can now
use the mailService to send an e-mail to each one:

for(user in users) {
 mailService.sendMail {
 from "notifications@gtunes.com"
 to user.email
 title "${artist.name} has released a new album: ${album.title}!"
 body view:"/emails/artistSubscription", model:[album:album,
 artist:artist,
 user:user]
 }
}

As you can see, the body method is used to specify that the e-mail is to be rendered by a
view called /emails/artistSubscription. We’ll return to this view in a moment. For complete-
ness, Listing 16-35 contains the full code listing for the onNewAlbum(Album) method.

Listing 16-35. The onNewAlbum(Album) Method

void onNewAlbum(Album album) {
 try {
 def artist = album.artist

512 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

 def users = ArtistSubscription.withCriteria {
 projections {
 property "user"
 }
 eq('artist', artist)
 }

 for(user in users) {
 mailService.sendMail {
 from "notifications@gtunes.com"
 to user.email
 title "${artist.name} has released a new album: ${album.title}!"
 body view:"/emails/artistSubscription", model:[album:album,
 artist:artist,
 user:user]
 }
 }

 }
 catch(Exception e) {
 log.error "Error sending album $album notification message: $e.message", e
 throw e
 }
}

One addition that we didn’t cover previously is the surrounding try/catch block in
Listing 16-35. An exception could occur if there was an error sending a mail or communicating
with the database. Notice how the exception is logged and rethrown within the catch block. So,
why rethrow the exception?

Essentially, the StockService is a transactional service class. It is using Grails’
transactionManager underneath the surface. If you recall, the jmsContainer bean was
given a reference to the Grails transactionManager in Listing 16-21. As a reminder, here
 is the relevant snippet from grails-app/conf/spring/resources.groovy:

jmsContainer(org.springframework.jms.listener.DefaultMessageListenerContainer) {
 ...
 transactionManager = ref("transactionManager")
 autoStartup = false
}

If an exception is thrown, Grails will automatically roll back the transaction. Since the
jmsContainer has a reference to the transactionManager, it will be made aware that the trans-
action was rolled back. The result is that the JMS transaction will be rolled back, effectively
marking the message as undelivered. ActiveMQ will then try to deliver the message again later.
Thanks to Spring’s transaction abstraction layer, you get a reliable messaging system, with
guarantees of message redelivery.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 513

The last thing to do is to finish up the subscription implementation by providing the view
that renders the e-mail. Listing 16-36 shows the grails-app/views/emails/artistSubscription.
gsp view.

Listing 16-36. The artistSubscription View

<%@ page contentType="text/plain"%>
Dear ${user.firstName} ${user.lastName},

One of your favorite artists ${artist.name} has released
a new album called ${album.title}!

It is available now on gTunes at
<g:createLink controller="album"
 action="display"
 id="${album.id}" absolute="true" />

Kind Regards,

The gTunes Team

Mixing Groovy and Java with Spring
Although Grails already takes advantage of Groovy’s joint compiler, allowing you to integrate
Java code seamlessly into a Grails application, it is often nice to provide this integration
via Spring.

As an example, currently the gTunes application is using some Groovy code to stream
music to the user. You can find the relevant code in the stream action of the SongController,
which is shown in Listing 16-37.

Listing 16-37. The Stream action of the SongController Class

def file = new File(song.file)
try {
 def type = file.name[-3..-1]
 response.contentType = "audio/x-${type}"
 def out = response.outputStream
 def bytes = new byte[BUFFER_SIZE]
 file.withInputStream { inp ->
 while(inp.read(bytes) != -1) {
 out.write(bytes)
 out.flush()
 }
 }
}

514 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

catch(Exception e) {
 log.error "Error streaming song $file: $e.message", e
 response.sendError 500
}

Performance-wise, Java undoubtedly has the edge on Groovy when writing low-level IO
code like that in Listing 16-37. You may want to optimize the stream action of the SongController
to use a Java class instead. To do so, create a new Java class called StreamingService in the src/
java/com/g2one/gtunes directory, as shown in Figure 16-7.

Figure 16-7. The StreamService.java file

Rather than reading each byte, you could take advantage of the java.nio.channels pack-
age that allows optimized file transfer. Of course, you could use the java.nio.channels package
from Groovy, but we’re currently shooting for maximum performance by writing the class in
Java. Listing 16-38 shows the implementation of the StreamingService class, which provides a
method called streamSong that can be used to transfer the bytes of a Song instance to the given
OutputStream.

Listing 16-38. The StreamingService Class

package com.g2one.gtunes;

import java.io.*;
import java.nio.channels.*;
import org.apache.commons.logging.*;

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 515

public class StreamingService
{
 private static final int BUFFER_SIZE = 2048;
 private static final Log LOG = LogFactory.getLog(StreamingService.class);

 /**
 * Streams the given song to the given OutputStream
 */
 public void streamSong(Song song, OutputStream out) {
 if(song != null) {
 File file = new File(song.getFile());
 FileInputStream input = null;
 try {
 input = new FileInputStream(file);
 FileChannel in = input.getChannel();
 in.transferTo(0,in.size(), Channels.newChannel(out));
 out.flush();
 }
 catch(Exception e) {
 throw new RuntimeException(e.getMessage(), e);
 }
 finally {
 try {
 input.close();
 }
 catch(IOException e) {
 // ignore
 }
 }
 }
 }
}

One important thing to note is that this Java class references the domain class com.g2one.
gtunes.Song, which is written in Groovy. Groovy’s joint compiler allows Java classes to resolve
Groovy classes, something that, as of this writing, is not possible in any other dynamic lan-
guage on the JVM. The remainder of the code simply obtains a FileChannel instance and then
calls the transferTo method to transfer the file to the response OutputStream.

Now you could just use the new operator to create a new instance of the StreamingService
class within the SongController. But a nicer way to do this is to use Spring. Simply register a
new bean in the grails-app/conf/spring/resources.groovy file for the StreamingService class,
as shown in Listing 16-39.

Listing 16-39. Creating a streamingService Bean

streamingService(com.g2one.gtunes.StreamingService)

516 C H A P T E R 1 6 ■ L E V E R A G I N G S P R I N G

Now to obtain a reference to this bean in SongController, just create the equivalent
property:

def streamingService

The stream action can then be modified to take advantage of the streamingService
instance, as shown in Listing 16-40.

Listing 16-40. Using the streamingService Bean

def stream = {
 ...
 if(song) {
 def albumPermission = new AlbumPermission(album:song.album)
 jsec.hasPermission(permission:albumPermission) {
 ...
 response.contentType = "audio/x-${song.file[-3..-1]}"
 streamingService.streamSong(song, response.outputStream)
 ...
 }
 ...
 }
 ...
}

As you can see from Listing 16-40, the streamSong method is called, passing in the Song
instance and the response object’s outputStream property. You now have a much better-
performing implementation that uses the java.nio.channels package instead. Since it is a
Spring bean, if you one day decided to change the StreamingService implementation—for
example, to stream the music from Amazon S3 instead—then all you would need to do is alter
the grails-app/conf/spring/resources.groovy file and register a different implementation.

The SongController would need no changes at all since it is using duck typing to invoke the
streamSong method. If you prefer static typing, then you could introduce an interface that the
StreamingService class can implement, exactly as you would do in Java.

Summary
This chapter gave you some revealing insight into the inner workings of Grails and its Spring
underpinnings. Moreover, you have learned that just because Grails embraces Convention
over Configuration, it does not mean that configuration is not possible. Quite the contrary—
every aspect of Grails is customizable thanks to Spring.

Grails provides such a clean abstraction over Spring that often users of Grails simply don’t
know Spring is there. In this chapter, you saw how you can reach out to great Spring APIs, such
as the JMS support, to help you solve commons problems. Having said that, Spring is an enor-
mous framework that provides far more features and benefits than we could possibly cover
in this chapter. There are Spring abstractions for pretty much every major Java standard and
many of the popular open source projects too.

C H A P T E R 1 6 ■ LE V E R A G I N G S P R I N G 517

If you really want to get to grips with Spring, we recommend you invest some time reading
the excellent reference documentation at http://static.springframework.org/spring/docs/
2.5.x/reference/ or take a look at Apress’ excellent array of Spring books.2 Doing so will help
improve your knowledge of Grails too, because fundamentally Grails is just Spring and Hiber-
nate in disguise! In the next chapter, we’ll look at one of the other major frameworks that Grails
builds on for its persistence concerns: Hibernate.

2. Some recent Spring books published by Apress include Pro Spring 2.5 by Jan Machacek et al. (Apress,
2008), Spring Recipes: A Problem-Solution Approach by Gary Mak (Apress, 2008), and Pro Java EE
Spring Patterns: Best Practices and Design Strategies Implementing Java EE Patterns with the Spring
Framework by Dhrubojyoti Kayal (Apress, 2008).

519

■ ■ ■

C H A P T E R 1 7

Legacy Integration with
Hibernate

Throughout the book, you have been constructing what is essentially a green field1 application.
There has been no legacy data to deal with, no database administrators (DBAs) are nagging you,
and in general life has been good. Unfortunately, in the real world, many applications do have to
be reengineered from existing sources and data.

Shockingly enough, these older projects may not follow the conventions that Grails uses
to define its database schema. The database tables may use completely different column and
table naming conventions. The strategy used to generate the database identifier may differ
from the native one Grails uses by default.

Fortunately, the Hibernate team has been on a mission to solve the object-relational
mismatch2 for years. Hibernate is capable of mapping onto more than 90 percent of all data-
base schemas and has broad support for different database vendors. In this chapter, we’ll cover
how you can reach out and call upon Hibernate’s more advanced features in Grails. First, we’ll
cover Grails’ mapping DSL that provides access to most of the common Hibernate features.
Later, we’ll delve into writing some Hibernate XML and even EJB 3 annotations with Grails.

Legacy Mapping with the ORM DSL
The most common mismatches experienced with Grails occur when the table and column
names that Grails expects don’t match the underlying database. You can control most aspects
of how Grails maps onto the underlying database using the object-relational mapping (ORM)
domain-specific language (DSL).

You’ve actually already had a chance to take advantage of the ORM DSL in Chapter 10 to
control fetch strategies and cache configuration. If you recall, to use the ORM DSL, you need
to define a mapping static variable that is assigned a Groovy closure, as shown in Listing 17-1.

1. In software engineering jargon, a green field project is one that is free of any constraints imposed by
prior work. See http://en.wikipedia.org/wiki/Greenfield_project.

2. Object-relational mismatch is a term used to describe the technical difficulties in mapping an object-
oriented-programming language onto a relational database system; see http://en.wikipedia.org/
wiki/Object-Relational_impedance_mismatch.

520 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

Listing 17-1. Defining the Mapping Closure

static mapping = {
 ...
}

Within the body of the closure, you can control how Grails maps classes onto the underly-
ing database. Let’s start with looking at how to change table and column names.

Changing Table and Column Name Mappings
To change the table a class maps onto, you can call the table method and pass the name of
the table. For example, by default the com.g2one.gtunes.Album class maps onto a table called
album. If you wanted to map onto a table called RECORDS instead, you could do so as shown in
Listing 17-2.

Listing 17-2. Changing the Table Name

class Album {
 ...
 static mapping = {
 table "RECORDS"
 }
}

You can change the column that individual properties map onto by invoking a method
that matches the property name. Then using a named argument, called column, you can set
the column name. Listing 17-3 shows an example that maps the title property onto a column
called R_TITLE.

Listing 17-3. Changing a Column Name Mapping

class Album {
 String title
 ...
 static mapping = {
 table "RECORDS"
 title column: "R_TITLE"
 }
}

Occasionally, you may run into a scenario where the name of a domain class or a property
on a domain class conflicts with a SQL keyword. For example, say you have a domain class
called Order. The Order domain class by default maps onto a table called order. The name order
conflicts with the SQL ORDER BY syntax. At this point, you have two options. You can rename
your domain class, or you can use backticks to escape the name of the table:

table "`order`"

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 521

Mapping simple properties such as title is, well, simple. Associations tend to require a lit-
tle more thought. In the next section, we’ll cover how you can change the way different kinds
of associations map onto the underlying database.

Changing Association Mappings
Grails has special logic that deals with mapping different kinds of associations onto a database.
For a simple one-to-one or many-to-one association, Grails will map a foreign key column. For
example, the artist property of the Album class will map to a column called artist_id that con-
tains the foreign key reference for the artist. You can change this in the same way as any simple
mapping, as shown in Listing 17-4.

Listing 17-4. Changing a Column Name for a Many-to-One Association

class Album {
 static belongsTo = [artist:Artist]
 ...
 static mapping = {
 artist column: "R_CREATOR_ID"
 }
}

The example in Listing 17-4 maps the artist property to a column called R_CREATOR_ID.
A one-to-many association requires a little more thought. First you need to consider whether
the one-to-many association is unidirectional or bidirectional. With a unidirectional one-to-
many association, GORM will use a join table to associate the two tables, since there isn’t a
foreign key available on the many side of the association. Figure 17-1 illustrates this.

Figure 17-1. How GORM maps a unidirectional one-to-many association

As you can see from Figure 17-1, if the albums association were unidirectional, GORM
would create an intermediate artist_albums join table in order to map the association cor-
rectly. The album_id column, containing the Album identifier, has a unique constraint applied
that ensures the join table can’t be used for a many-to-many association. For a unidirectional

522 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

association to work, a join table must available. However, you can change the name of this join
table and the columns it uses to create the join.

To do so, you need to use the joinTable argument on the one side of the association.
Listing 17-5 shows an example of using the joinTable argument on the albums property of
the Artist class.

Listing 17-5. Using a joinTable Mapping

class Artist {
 static hasMany = [albums:Album]
 ...
 static mapping = {
 albums joinTable:[name:'Artist_To_Records',
 key:'Artist_Id',
 column:'Record_Id']
 }
}

In the example in Listing 17-5, the joinTable argument is used to map the unidirectional
albums association onto a join table called Artist_To_Records. The key argument is used to
specify the column to store the identifier of the one side, which in this case is the id property
of the Artist. Conversely, the column argument is used to specify the name of the column to
store the identifier of the many side.

Crucially, the mapping in Listing 17-5 works only for a unidirectional one-to-many
because with a bidirectional one-to-many mapping a join table is not used. Instead, a foreign
key association is created. Figure 17-2 shows how GORM maps a bidirectional one-to-many
association.

Figure 17-2. A bidirectional one-to-many association

As you can see from Figure 17-2, since there is a two-ended association, no join table is
necessary. The foreign key column artist_id is used to map the albums association. If you sim-
ply need to change the column that is used to establish the foreign key association, then you

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 523

can do so using the column argument on either end of the association. Listing 17-6 shows an
example that uses the column argument with the artist property of the Album class.

Listing 17-6. Changing the Foreign Key for a Bidirectional One-to-Many Association

class Album {
 ...
 static mapping = {
 artist column: "R_Artist_Id"
 }
}

One final relationship type to consider is a many-to-many association. A many-to-many
association is mapped using a join table in a similar way to a unidirectional one-to-many associ-
ation. Figure 17-3 shows an example of how a many-to-many association works if you created
a hypothetical Composer domain class. Each Composer has many albums, while each Album has
many composers, making this a many-to-many relationship.

Figure 17-3. How Grails maps a many-to-many association

You can change the way a many-to-many association maps onto the underlying database
using the same joinTable argument used to configure a unidirectional one-to-many association.
Listing 17-7 shows an example of changing the table and column names for the relationship that
Figure 17-3 models.

Listing 17-7. Changing Table and Column Name Mappings for a Many-to-Many

class Composer {
 static hasMany = [albums:Album]
 static mapping = {
 table "MUSICIAN"
 albums joinTable: "MUSICIAN_TO_RECORD", column: "RECORD_ID"
 }
}

524 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

class Album {
 static hasMany = [composers:Composer]
 static belongsTo = Composer
 static mapping = {
 ...
 composers joinTable: "MUSICIAN_TO_RECORD", column: "MUSICIAN_ID"
 }
}

The example in Listing 17-7 will map to a join table called MUSICIAN_TO_RECORD. Figure 17-4
shows an example of what the table looks like.

Figure 17-4. The MUSICIAN_TO_RECORD join table

Understanding Hibernate Types
Hibernate by default knows how to persist a range of different common Java types. For exam-
ple, it will assume a java.lang.String maps to a java.sql.Types.VARCHAR SQL type.

The org.hibernate.Hibernate class contains a number of constants that represent the
different types that Hibernate knows about by default. For example, the constant Hibernate.
STRING represents the type used to persist String instances by default. The SQL VARCHAR type
is typically limited to 255 characters, and in some cases this may not be practical.

Using the ORM DSL, you can change the default type used to map a specific column.
Listing 17-8 shows an example of changing the title property of the Album class to a Hibernate.
TEXT type.

Listing 17-8. Changing the Hibernate Type

class Album {
 ...
 String title
 static mapping = {
 title type: "text"
 }
}

As Listing 17-8 demonstrates, you can refer to the different Hibernate types by name when
doing the mapping. The text type will map the text property to a java.sql.Types.CLOB column.

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 525

In addition to this, Hibernate allows you to specify custom implementations of the org.
hibernate.usertype.UserType interface to allow Hibernate to persist other types. As an exam-
ple, say you wanted to use the excellent JodaTime Java date and time API (http://joda-time.
sourceforge.net). Hibernate by default doesn’t know how to persist instances of the JodaTime
API such as the org.joda.time.DateTime class.

Fortunately, JodaTime provides a number of custom UserType implementations that can
be used to persist JodaTime objects. Listing 17-9 shows an example that uses the org.joda.
time.Duration class to represent the duration of a song, instead of an integer.

Listing 17-9. Using the JodaTime Hibernate UserType

class Song {
 ...
 org.joda.time.Duration duration
 static mapping = {
 duration type: org.joda.time.contrib.hibernate.PersistentDuration
 }
}

■Note The example in Listing 17-9 assumes you have the necessary JodaTime JAR files within the lib direc-
tory, including the JodaTime Hibernate integration library found at http://joda-time.sourceforge.net/
contrib/hibernate/index.html.

With Hibernate types, including custom UserType instances, the choice of underlying SQL
type is made by the implementation. The sqlTypes() method of the org.hibernate.usertype.
UserType interface is responsible for returning an array of SQL types that the UserType maps to.
Why an array? Well, a UserType may use multiple columns for storage, so a type is needed for
each column used to store data.

For example, the PersistentDuration class from Listing 17-9 returns an array containing a
single entry—the Types.VARCHAR SQL type. If you need to override the SQL type used, then you
can use the sqlType argument, as shown in Listing 17-10.

Listing 17-10. Using the sqlType Argument

class Song {
 ...
 org.joda.time.Duration duration
 static mapping = {
 duration type: org.joda.time.contrib.hibernate.PersistentDuration,
 sqlType: "VARCHAR(120)"
 }
}

526 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

■Note Be careful when using the sqlType argument because you may lose database independence since
you are referring directly to underlying SQL types of the database that sometimes differ from vendor to vendor.

Now let’s look at a more complex example. Currently, the gTunes application uses a simple
Float to represent the price property of the Album class. Say you wanted to have an object that
encapsulates not just the price but also the currency. Listing 17-11 shows the MonetaryAmount
class that contains properties for both the value and the currency of a given amount.

Listing 17-11. The MonetaryAmount Class

package com.g2one.gtunes

class MonetaryAmount implements Serializable {
 private final BigDecimal value
 private final Currency currency

 MonetaryAmount(value, Currency currency) {
 this.value = value.toBigDecimal()
 this.currency = currency
 }

 BigDecimal getValue() { this.value }
 Currency getCurrency() { this.currency }

 boolean equals(o) {
 if (!(o instanceof MonetaryAmount)) return false
 return o.value == this.value && o.currency == this.currency
 }

 int hashCode() {
 int result = 23468
 result += 37 * this.value.hashCode()
 result += 37 * this.currency.hashCode()
 return result
 }
}

This class lives in the src/groovy directory, so it is not a persistent domain class. Unfortu-
nately, Hibernate has no way of knowing how to persist instances of the MonetaryAmount class.
To get around this, you need to implement a custom UserType. Listing 17-12 shows the code for
the MonetaryAmountUserType, which stores the properties of the MonetaryAmount class in two dif-
ferent columns.

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 527

Listing 17-12. The MonetaryAmountUserType Hibernate User Type

package com.g2one.gtunes

import java.sql.*
import org.hibernate.*
import org.hibernate.usertype.UserType

class MonetaryAmountUserType implements UserType {

 private static final SQL_TYPES = [Types.NUMERIC, Types.VARCHAR] as int[]

 public int[] sqlTypes() { SQL_TYPES }
 public Class returnedClass() { MonetaryAmount }
 public boolean equals(x, y) { x == y }
 public int hashCode(x) { x.hashCode() }
 public Object deepCopy(value) { value }
 public boolean isMutable() { false }

 Serializable disassemble(value) { value }
 def assemble(Serializable cached, owner) { cached }
 def replace(original, target, owner) { original }

 public Object nullSafeGet(ResultSet resultSet,
 String[] names,
 Object owner)
 throws HibernateException, SQLException {
 if (resultSet.wasNull()) return null

 def value = resultSet.getBigDecimal(names[0])
 def currency = Currency.getInstance(resultSet.getString(names[1]))
 return new MonetaryAmount(value, currency)
 }

 void nullSafeSet(PreparedStatement statement,
 Object amount,
 int index) {

 if (amount == null) {
 statement.setNull(index, SQL_TYPES[index])
 statement.setNull(index + 1, SQL_TYPES[index + 1])
 }

528 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

 else {
 def currencyCode = amount.currency.currencyCode
 statement.setBigDecimal(index, amount.value)
 statement.setString(index + 1, currencyCode)
 }
 }
}

The crucial parts of the code in Listing 17-12 are the implementations of the nullSafeGet
and nullSafeSet methods. The nullSafeGet method is responsible for reading the java.sql.
ResultSet and creating a new instance of the target type:

def value = resultSet.getBigDecimal(names[0])
def currency = Currency.getInstance(resultSet.getString(names[1]))
return new MonetaryAmount(value, currency)

The nullSafeSet method is used to populate the PreparedStatement used to store an
instance of the target type. The last argument of the nullSafeSet method is the current index,
which you can use to set ordinal-based arguments on the PreparedStatement instance:

def currencyCode = amount.currency.currencyCode
statement.setBigDecimal(index, amount.value)
statement.setString(index + 1, currencyCode)

One final thing to note is the definition of the SQL types used:

private static final SQL_TYPES = [Types.NUMERIC, Types.VARCHAR] as int[]

Since there are two entries in the array, the MonetaryAmountUserType will require two col-
umns to function correctly. Now let’s look at how to take advantage of the MonetaryAmount class
in gTunes. Listing 17-13 shows the updates to the com.g2one.gtunes.Album class.

Listing 17-13. Using Custom User Types

class Album {
 MonetaryAmount price
 ...
 static mapping = {
 price type: MonetaryAmountUserType, {
 column name: "price"
 column name: "currency_code"
 }
 }
}

As you can see from Listing 17-13, you can use the type argument to specify the
MonetaryAmountUserType implementation. Then you need to configure the mapping of
the columns used by a MonetaryAmountUserType by passing a closure. Within the body
of the closure, you can set the column names used. Notice that order of the column
definitions must match the order of the values returned by the sqlType() method of
the MonetaryAmountUserType class.

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 529

In addition, if you need to override the underlying SQL type used by each of the columns
in the MonetaryAmountUserType class, then you can use the sqlType argument you saw earlier.
Listing 17-14 shows an example.

Listing 17-14. Using sqlType with Custom User Types

class Album {
 MonetaryAmount price
 ...
 static mapping = {
 price type: MonetaryAmountUserType, {
 column name: "price"
 column name: "currency_code", sqlType: "text"
 }
 }
}

Changing the Database Identity Generator
The default strategy that GORM uses to obtain an identifier for a newly persisted domain class
instance is to use the native database generator. The actual algorithm chosen depends on the
capabilities of the underlying database. For example, in MySQL GORM will ask the database to
generate an identifier from the id column in a given table.

Many databases don’t use an identity column, instead relying on other techniques such as
sequences or user-generated identifiers. Fortunately, with Hibernate there is a nice API for
defining the identifier generation strategy that is accessible through GORM. Extracted from the
Hibernate documentation, this is a list of available identity generators:

• increment: Generates identifiers of type long, short, or int that are unique only when no
other process is inserting data into the same table. This strategy should not be used with
Grails since multiple threads accessing the table could result in non-unique identifiers.

• identity: Supports identity columns in DB2, MySQL, MS SQL Server, Sybase, and
HypersonicSQL. The returned identifier is of type long, short, or int.

• sequence: Uses a sequence in DB2, PostgreSQL, Oracle, SAP DB, and McKoi, or uses a
generator in Interbase. The returned identifier is of type long, short, or int.

• hilo: Uses a high/low algorithm to efficiently generate identifiers of type long, short,
or int, given a table and column (by default hibernate_unique_key and next_hi, respec-
tively) as a source of high values. The high/low algorithm generates identifiers that are
unique only for a particular database.

• seqhilo: Uses a high/low algorithm to efficiently generate identifiers of type long, short,
or int, given a named database sequence.

• uuid: Uses a 128-bit UUID algorithm to generate identifiers of type string, unique within
a network (the IP address is used). The UUID is encoded as a string of hexadecimal digits
of length 32.

530 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

• guid: Uses a database-generated GUID string on MS SQL Server and MySQL.

• native: Picks identity, sequence, or hilo depending upon the capabilities of the under-
lying database.

• assigned: Leaves the application to assign an identifier to the object before save() is called.

• select: Retrieves a primary key assigned by a database trigger by selecting the row by
some unique key and retrieving the primary key value.

• foreign: Uses the identifier of another associated object. This is usually used in conjunc-
tion with a one-to-one primary key association.

• sequence-identity: A specialized sequence generation strategy that utilizes a database
sequence for the actual value generation but combines this with JDBC 3’s getGeneratedKeys
to actually return the generated identifier value as part of the insert statement execution.
This strategy is known to be supported only on Oracle 10g drivers targeted for JDK 1.4.

As you can see, you can choose form many different options, the details of which are covered
in far more detail in the Hibernate reference documentation at http://www.hibernate.org/
hib_docs/reference/en/html/mapping.html#mapping-declaration-id-generator. Nevertheless,
as an example of configuring a custom generator in Grails, Listing 17-15 shows how to configure
a hilo generator.

Listing 17-15. Configuring a hilo Generator

class Album {
 ..
 static mapping = {
 id generator:'hilo', params:[table:'hi_value',
 column:'next_value',
 max_lo:100]
 }
}

The example in Listing 17-15 uses a hilo generator that uses a table called hi_value that
contains a column called next_value to compute an identifier. If you are familiar with Hiber-
nate, you will have noticed that the map passed to the params argument is equivalent to the
<param> element in Hibernate XML mapping. For example, to achieve the equivalent mapping
in Hibernate XML, you could use the XML in Listing 17-16.

Listing 17-16. Configuring hilo Generator in XML

<id name="id" type="long" column="cat_id">
 <generator class="hilo">
 <param name="table">hi_value</param>
 <param name="column">next_value</param>
 <param name="max_lo">100</param>
 </generator>
</id>

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 531

If the target database doesn’t have a numeric identifier but instead uses assigned String
values as identifiers, then you can use the assigned generator. For example, say you wanted to
use the title property of the Album class as the identifier instead. You could do so with the code
in Listing 17-17.

Listing 17-17. Configuring an assigned Generator

class Album {
 String title
 ...
 static mapping = {
 id name: "title", generator: "assigned"
 }
}

The name argument is used to signify the name of the property used for the identifier, while
the generator argument is set to assigned.

Using Composite Identifiers
Staying on the topic of identifiers, with Grails you can also use composite identifiers. A com-
posite identifier is an identifier consisting of two or more unique properties of a domain class.
For example, the Album domain class could use the title and artist properties to form a com-
posite identifier, as shown in Listing 17-18.

Listing 17-18. Configuring a Composite Identifier

class Album implements Serializable {
 String title
 Artist artist
 ...
 static mapping = {
 id composite:["title","artist"]
 }
}

In Listing 17-18, the composite argument is used to pass a list of property names that form
the composite primary key. To retrieve domain instances that utilize a composite identifier,
you need to pass an instance of the domain class to the get method. For example, given the
composite identifier from Listing 17-18, you can use the following code to retrieve an Album
instance:

def a = Artist.findByName("Tool")
def album = Album.get(new Album(artist:a, title: "Lateralus"))

Note that when using composite identifiers, your domain class must implement the
java.io.Serializable interface; otherwise, you will receive an error. And that completes this
tour of the mapping features available through GORM. In the next section, we’ll cover how you

532 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

can use raw Hibernate to achieve a lot of what you’ve seen so far, and you’ll learn how to access
the full range of Hibernate configuration options.

Mapping with Hibernate XML
So far in this chapter, you saw how Grails integrates with Hibernate by providing an alternative
mapping mechanism that uses convention instead of configuration. What’s not tackled in that
chapter is that this integration doesn’t preclude you from using one of Hibernate’s other map-
ping strategies.

Essentially, Hibernate defines two built-in mapping strategies. The first, and more com-
mon, is to use XML mapping files that define how an object is mapped to its related database
table. In the next section, you will see how this can be achieved with Grails to gain greater flex-
ibility and control over the mapping options available to you.

Although Hibernate XML is not nearly as concise and simple to work with as GORM, what
it does provide is flexibility. It allows fine-grained control over how a class is mapped onto the
underlying database, giving you access to the mapping features not available in the ORM DSL.

An important point is that you don’t have to map all classes with Hibernate; you can mix
and match where you think it’s appropriate. This allows GORM to handle the typical case and
allows Hibernate to do the heavy lifting.

To get going, the first thing you need to do is create the hibernate.cfg.xml file within the
grails-app/conf/hibernate directory of the gTunes application. Figure 17-5 shows an example
of how do to this.

Figure 17-5. The hibernate.cfg.xml file

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 533

The hibernate.cfg.xml file serves to configure the Hibernate SessionFactory, the class
that Hibernate uses to interact with the database via sessions. Grails, of course, manages all
this for you via the dynamic persistent methods discussed in Chapters 3 and 10.

All we’re concerned with at this point is mapping classes from the domain model onto
tables in a database. As it stands, the content of the hibernate.cfg.xml file looks something like
Listing 17-19.

Listing 17-19. The hibernate.cfg.xml File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 http://hibernate.sourceforge.net/hibernate-configuration-
3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <!-- Mapping goes here -->
 </session-factory>
</hibernate-configuration>

At the moment, there is just an empty configuration file. To map individual classes, it is
good practice to create individual mapping files for each class and then refer to them in the
main hibernate.cfg.xml file.

Listing 17-20 shows how you can use the <mapping> tag within the hibernate.cfg.xml file
to achieve this.

Listing 17-20. Adding Mapping Resources to hibernate.cfg.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-
3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <mapping resource="com/g2one/gtunes/User.hbm.xml"/>
 </session-factory>
</hibernate-configuration>

The additional mapping is defined in bold with a new mapping resource reference for the
com.g2one.gtunes.User class. Of course, the User.hbm.xml file does not yet exist at this point, so
you need to create it. Figure 17-6 demonstrates what the state of the directory structure should
look like after you’ve created the mapping file.

534 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

Figure 17-6. Hibernate config with mapping files

Mapping files contain the actual mappings between the object model and relational table.
They’re normally located in the same package as the mapped class and follow the naming con-
vention of the class. For example, the mapping file that handles the User mapping is User.hbm.
xml, the contents for which are shown in Listing 17-21.

Listing 17-21. The User.hbm.xml Mapping File

 <?xml version="1.0"?>
 <!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">
 <hibernate-mapping>
 <class name="com.g2one.gtunes.User" table="user_table" lazy="true">
 <comment>The User domain object</comment>

 <id name="id" column="user_id">
 <generator class="native"/>
 </id>
 <natural-id mutable="true">
 <property name="login"
 length="10"/>
 </natural-id>
 <property name="password"
 not-null="true"
 column="u_pwd"/>

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 535

 <property name="email"/>
 <property name="firstName" column="u_first_name"/>
 <property name="lastName" column="u_last_name"/>
 ...
 </class>
 </hibernate-mapping>

Listing 17-21 shows how you can map the User class onto a table called user_table that
has a natively generated identifier and a natural identifier. A natural identifier, demonstrated
by the use of the <natural-id> tag in Listing 17-21, is a property or a combination of properties
that is unique to an instance of the User class. In this case, the login property is unique for each
User instance and hence has been identified as the natural identifier.

Hibernate will create unique and not-null constraints when creating the database schema
for the natural identifier.

Additionally, Hibernate recommends implementing equals and hashCode based on the
natural id where possible. In fact, this is recommended even without Hibernate in place.
Listing 17-22 shows the amends made to the User domain class to complete this example.

Listing 17-22. User Domain Class Modifications

class User {
 ...
 boolean equals(obj) {
 if(this==obj) return true
 if(!obj || obj.class != this.class) return false
 return login?.equals(obj.login) ? true : false
 }
 int hashCode() {
 return login ? login.hashCode() : super.hashCode()
 }
}

Although not strictly necessary, or even enforced by Hibernate, implementing equals and
hashCode will help Hibernate behave correctly when dealing with collections of objects and
querying.

With that strategy covered, let’s move onto another alternative mapping strategy that uses
annotations in the next section.

EJB 3–Compliant Mapping
In its latest incarnation, version 3.0, EJB has drawn inspiration from Hibernate. In many
senses, EJB 3.0 responds to Hibernate’s market dominance by offering an API that has the same
feel as Hibernate but is vendor neutral.

One part of the specification is the Java Persistence API (JPA) that defines a set of annota-
tions for persisting POJO objects using object-relational mapping. Although Grails doesn’t
support JPA directly (this support is still on the road map at the time of writing), what you can
do is write EJB 3.0–compliant entity beans using JPA annotations. As well as annotations, JPA
uses Java’s Generics feature to establish the type of objects contained within collections and

536 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

other generic interfaces. Generics were added to Java to increase type safety and avoid unnec-
essary casting when working with generic objects such as the collections API.

 In the next example, you’ll use JPA annotations to map a Java version of the com.g2one.
gtunes.Address class within the gTunes.

To get started, make sure you have the gTunes application imported into Eclipse as
described in Chapter 3.

Next, create new Address Java class in com.g2one.gtunes under the src/java tree using the
New Java Class dialog box shown in Figure 17-7.

Figure 17-7. The Eclipse New Java Class dialog box

Figure 17-7 shows how to create the Address class within the aforementioned package.
Once the Address class has been created, Eclipse’s Package Explorer shows a source structure
something like Figure 17-8.

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 537

Figure 17-8. The Address class

Now it’s time to write some Java code. First open the Address class and add the @Entity
annotation to the class name. To get the class to compile correctly, you will need to import the
javax.persistence.Entity annotation as per Listing 17-23.

Listing 17-23. The Class Address.java

package com.g2one.gtunes;

import javax.persistence.Entity;
import javax.persistence.Table;

@Entity
@Table(name="address_table")
public class Address {
 // class body
}

As the previous code example shows, you will also need to use the @Table annotation to
specify the table name previously used in the section “Mapping with Hibernate XML.”

Now create private fields that match the names of the previous Address GORM domain
class as per Listing 17-24.

Listing 17-24. The Address Entities Fields

package com.g2one.gtunes;
...
public class Address {
 private Long id;
 private Long version;
 private String number;
 private String street;
 private String city;
 private String state;
 private String postCode;
 private String country;
}

538 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

Once this has been done, you need to create public getters and setters for each field so that
the Address class becomes a fully fledged JavaBean. Eclipse can help you here by accessing the
Source/Generate Getters and Setters menu option. This will make each field into what is
known as a property.

Once the properties have been generated, you need to annotate certain properties with
additional information defining their purpose, starting with the id property in Listing 17-25.

Listing 17-25. The id Property

@Id
@Column(name="address_id")
@GeneratedValue
public Long getId() {
 return id;
}

In Listing 17-25 the id property is the primary key, it maps to a column called address_id,
and its value is generated natively by the database. Next, the Address class’s version property
needs to be annotated with the @Version annotation. The @Version annotation is needed to
specify the property used for optimistic locking (see Chapter 10 for more information about
optimistic locking). Listing 17-26 shows how to annotate the getVersion() method with the
@Version annotation.

Listing 17-26. The login Property

@Version
public Long getVersion() {
 return version;
}

The city, country, and postcode properties require different column names. Again, you
can adjust this by using the @Column annotation, as shown in Listing 17-27.

Listing 17-27. Mapping Individual Columns

@Column(name="a_city")
public String getCity() {
 return city;
}
@Column(name="a_country")
public String getCountry() {
 return country;
}
@Column(name="a_post_code")
public String getPostCode() {
 return postCode;
}

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 539

You will, of course, have to add the imports for the @Column, @GeneratedValue, and @Id
annotations used so far, but Eclipse or any good IDE will likely do this for you. Once complete,
the new EJB 3–compliant Address class will look like the following:

package com.g2one.gtunes;

import javax.persistence.*;

@Entity
@Table(name="address_table")
public class Address {
 private Long id;
 private Long version;
 private String number;
 private String street;
 private String city;
 private String state;
 private String postCode;
 private String country;

 @Id
 @GeneratedValue
 public Long getId() {
 return id;
 }
 public void setId(Long id) {
 this.id = id;
 }

 @Version
 public Long getVersion() {
 return version;
 }
 public void setVersion(Long version) {
 this.version = version;
 }
 public String getCity() {
 return city;
 }
 public void setCity(String city) {
 this.city = city;
 }
 public String getCountry() {
 return country;
 }

540 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

 public void setCountry(String country) {
 this.country = country;
 }
 public String getNumber() {
 return number;
 }
 public void setNumber(String number) {
 this.number = number;
 }
 public String getPostCode() {
 return postCode;
 }
 public void setPostCode(String postCode) {
 this.postCode = postCode;
 }
 public String getState() {
 return state;
 }
 public void setState(String state) {
 this.state = state;
 }
 public String getStreet() {
 return street;
 }
 public void setStreet(String street) {
 this.street = street;
 }

}

With that rather long listing out of the way, there are a few things left to do to complete the
migration to an EJB 3.0 entity. First, you need to update each DataSource in the grails-app/conf
directory to tell Grails that you want to use an annotation configuration strategy. Listing 17-28
shows the necessary changes to the development DataSource.

Listing 17-28. Specifying the Annotation Configuration Strategy

import org.codehaus.groovy.grails.orm.hibernate.cfg.*
class DevelopmentDataSource { // Groovy
 def configClass = GrailsAnnotationConfiguration
 ...
}

With that done, the hibernate.cfg.xml file located in the grails-app/conf/hibernate
directory needs updating to reflect the fact that you are no longer using Hibernate XML

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 541

mapping. Listing 17-29 shows the update Hibernate configuration file with each class refer-
enced using the class attribute of the mapping tag.

Listing 17-29. Updated hibernate.cfg.xml File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
 <session-factory>
 <mapping package="com.g2one.gtunes"/>
 <mapping class="com.g2one.gtunes.Address" />
 </session-factory>
</hibernate-configuration>

The previous mapping simply tells Hibernate which classes are persistent, and the config-
uration of the mapping is then delegated to the annotations contained within the classes
themselves.

You now need to delete the Groovy version of the Address domain class in grails/domain,
since its Java equivalent has superseded it.

You can now start Grails using grails run-app, and the gTunes application will operate as
if nothing has changed. The remarkable thing here is that the Address class is written in Java,
and yet all of the dynamic finder and persistence methods work as if by magic.

Grails is an unobtrusive framework, and by that we mean it doesn’t require your domain
objects to have any knowledge of the framework itself. Grails will magically inject the necessary
behavior to support dynamic persistence and query methods into each EJB 3.0 entity using
Groovy’s Meta Object Protocol.

Grails’ unobtrusive nature makes it an appealing proposition, because you can essentially
reuse an existing Hibernate domain model and get all the benefits of the dynamic nature of
Grails when you need to. On the other hand, if you want to reuse the domain model and map-
ping from an older application, you can use the same domain model, because there are no
framework specifics tying domain objects to Grails.

This is an incredibly powerful concept and one of the defining aspects of Grails that sets
it apart from other frameworks and allows you to adopt a blended approach. By blended we
mean having the choice to use static typing when you want to or, if you so choose, harnessing
the power of dynamic typing when it suits your needs.

Before we continue, there is one thing you should do just to be sure that your application
is working exactly as it was before you migrated the domain model: execute the tests. In fact, if
you execute grails test-app at this point, you will get a number of failures. Why? During the
migration you lose the power that GORM’s constraints mechanism offers.

So, how do you create constraints for EJB 3 entities? In the next section we tackle this
very issue.

Using Constraints with POJO Entities
Clearly, one of the powerful features of Grails is its constraints mechanism (discussed in
Chapter 3). It allows a flexible way to specify metainformation about a class that can then

542 C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E

be used in features such as validation and scaffolding. The reason there are failing test cases,
as mentioned at the end of the previous section, is that your validation logic for the Address
class is no longer working because of missing constraints.

Why is it not working? Quite simply, it’s because it is not there! Java doesn’t support
closures or builders, so you can’t just include the necessary code inside a Java class. Luckily,
however, Grails has an elegant solution to this problem, again based on the convention
approach.

What you need to do is create a new Groovy script in the same package and directory (yes,
a Groovy file is now placed under src/java/...) as the class for which the constraints are being
applied. The scripts name needs to start with the name of the class and end with Constraints.
Figure 17-9 shows a new Groovy script called AddressConstraints.groovy.

The reason the previous file is a script is that it doesn’t make sense to define an entirely
new class just to define constraints on an existing class. All you are really interested in is apply-
ing a set of constraints in the same form as shown inside GORM classes. Listing 17-30 shows
how to apply constraints within the AddressConstraints.groovy script.

That is all the file contains: no class definition, no configuration, just the constraints that
apply to the Address class. At runtime, Grails will load and execute this script to retrieve the
constraints that apply to the Address class, hence allowing Java domain classes to have con-
straints in the same format as GORM classes.

Figure 17-9. Creating the AddressConstraints.groovy script

Listing 17-30. Applying Constraints to the Address Class

package com.g2one.gtunes
constraints = {
 number blank:false, maxSize:200
 street blank:false, maxSize:250
 city blank:false, maxSize:200
 postCode blank:false, maxSize:50
 country blank:false, maxSize:200
}

C H A P T E R 1 7 ■ L E G A C Y I N T E G R A T I O N W I T H H I B E R N A T E 543

Summary
In this chapter, you learned the fundamental message behind Grails, even if you didn’t realize
it until now. Grails strives to make the common, repetitive tasks that Java developers face every
day ridiculously simple.

On the other hand, Grails provides all the underlying power and flexibility that you get in
traditional Java web frameworks. Need to integrate with an LDAP directory? No problem. Want
to expose a SOAP API onto a Grails service? That’s possible too. In fact, whatever you can con-
figure with Spring can be integrated with Grails.

In addition, you found out that you can write your domain model in Java and still take
advantage of all the advanced Grails features such as dynamic finders, criteria, and scaffolding.
Grails takes integration with Java extremely seriously, with the whole goal being to provide an
environment for blended development. This also makes committing to Grails a safe choice,
since you can always use Java where deemed necessary.

The reality is that there are many cases where static typing is the better choice, and
conversely, there are many where dynamic typing is favorable. Groovy and Grails provide a
platform to use a mix of approaches that allows you to switch between environments without
requiring a large mental shift or making you deal with incompatibilities between programming
platforms and paradigms.

545

■ ■ ■

A P P E N D I X

The Groovy Language

Groovy is an all-purpose programming language for the JVM. It was born in 2003 when James
Strachan and Bob McWhirter founded the Groovy project with the goal of creating a glue lan-
guage to easily combine existing frameworks and components. Groovy is a language that aims
to bring the expressiveness of languages such as Ruby, Lisp, and Python to the Java platform
while still remaining Java friendly.

It attracted much excitement with these ambitious goals, because the majority of other
scripting languages on the Java platform either used an entirely alien syntax and APIs or were
simply Java without the need to specify types.

Despite its youth, Groovy is a stable, feature-rich language that forms the perfect base for
Grails. This is a fantastic achievement, given the limited resources available to an open source
project such as Groovy.

Groovy was an obvious choice as a platform for the Grails framework, because it
provides the necessary underlying infrastructure to create the diverse range of miniature
domain-specific languages utilized throughout Grails.

■Note Martin Fowler has written an excellent article about domain-specific languages: http://www.mar-
tinfowler.com/bliki/DomainSpecificLanguage.html.

What does this mean? Well, the syntax you see used throughout the book has often been
magically enhanced and shortened by using a combination of Groovy’s already concise syntax
and its support for metaprogramming. Groovy performs a lot of magic under the covers,
abstracted away from the developer. This removes the burden from the programmer who
would otherwise be required to write reams of unnecessary, repetitive code.

Before we start our journey through the diverse syntax offered by Groovy, it is worth
understanding how it compares to its cousin Java. In the next section, you will see how seam-
lessly Groovy integrates with Java at the syntax level.

Groovy and Java: A Comparison
Groovy’s resemblance to Java is often quite striking. Some Groovy code is almost indis-
tinguishable from Java. If your Groovy code looks too much like Java, you can improve
its expressiveness by writing more idiomatic Groovy. Groovy code, when written by an

546 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

experienced Groovy developer, typically occupies 40–60 percent fewer lines of code when
compared to the equivalent Java. In the following sections, we’ll cover the key similarities and
differences between Groovy and the Java language.

What’s the Same?
Java and Groovy actually have many similarities. This is what makes Groovy so appealing from
a Java developer’s perspective. There is no huge mental shift necessary to start working with
Groovy. The Groovy syntax can almost be seen as a superset (although this is not the case) of
the Java language, with the following taken directly from Java’s syntax:

• Keywords and statements

• try/catch/finally exception handling

• Class, interface, field, and method definitions

• Instantiation of objects using the new operator

• Packaging and imports

• Operators, expressions, and assignment

• Control structures

• Comments

• Annotations, Generics, static imports, and enum types from Java 5

More importantly, though, Groovy shares the same object and runtime model as Java, so
the infrastructure that you are operating in (the JVM) is the same. What does this mean? Well,
although Groovy is a dynamic language like Ruby or Python, it is not interpreted. All Groovy
code, be it executed as a script or a fully qualified class, is compiled down to byte code and then
executed.

You shouldn’t underestimate the significance of this, because it means that a Groovy class
is a Java class and that Groovy and Java can interoperate with each other seamlessly. A Java
class can call methods on a class implemented in Groovy without ever knowing any different.

So, that’s what is the same; again, we’ve given a brief overview, but really the similarities
become obvious quite quickly once you start working with Groovy. Of equal significance, how-
ever, is what is different about Groovy.

What’s Different?
One of the things that makes Groovy different is that a number of things are optional, including
parentheses, return statements, and semicolons at the end of statements.

■Note The rules that govern optional parentheses are unambiguous, but it’s generally good style to include
parentheses in all but the simplest of cases (for example, in a println statement).

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 547

In addition, some import statements are optional, because Groovy automatically imports
the following packages for you:

• groovy.lang.*

• groovy.util.*

• java.lang.*

• java.util.*

• java.util.regex.*

• java.net.*

• java.io.*

• java.math.BigDecimal, java.math.BigInteger

Besides these differences, Groovy’s main goal is to add features that make the common
tasks faced by Java developers trivial. To facilitate this, Groovy supports the following:

• Closures (similar to anonymous code blocks but with different scoping rules)

• Advanced String support with interpolation (described in the “Groovy Strings” section
of this chapter), regular expressions, and template generation

• True object oriented programming with autoboxing/unboxing

• Operator overloading and syntactic structures to ease access to existing Java classes

• Improved syntax for existing data types augmented by new types

• An extended library of methods onto existing Java classes

At this point, we’ve tackled many of the similarities and differences with Java but have yet
to show any actual code. In the next section, you’ll start your journey into Groovy by getting the
basics right first.

The Basics
The Groovy syntax is extremely closely aligned to that of Java; this does not mean you can copy
and paste Java code into Groovy, and vice versa (although in some cases this does work), but it
does mean that it all feels very familiar.

Fundamentally, Groovy can be written either in classes or as a script. Implementing the
“Hello World!” example as a Groovy script would involve one line of code:

println 'Hello World!'

Assuming you’ve saved this code in a file called Hello.groovy, executing it is trivial too:

groovy Hello.groovy

548 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

Groovy automatically creates an executable class from the script. The reason this is high-
lighted is that it is important to note that even though no class has been declared, the previous
code will inevitably still become a class that extends groovy.lang.Script.

■Note The groovy.lang.Script class is the superclass used by Groovy to provide support for running
arbitrary snippets of code as scripts.

Like Java, everything in Groovy must be a class.

Declaring Classes
Class declaration is simple and familiar enough. Listing A-1 shows an example of a simple
HelloController class from a Grails application.

Listing A-1. HelloController.groovy

class HelloController {
 def world = {
 render "Hello World it's " + new java.util.Date()
 }
}

Here we have defined a class called HelloController that contains a single property called
world. The property itself has been assigned a value, which is a closure. Java developers may be
a little confused at the moment as how this simple declaration can be a property given the ver-
bosity of the property syntax in Java.

Essentially, another difference from Java is that Groovy has no concept of the default
visibility (also known as package-level visibility). Instead, properties declared at the default
level, without any explicit modifiers such as private, protected, or public, are assumed to be
JavaBean properties, and the appropriate getters and setters are generated for you.

The lack of default visibility also becomes clear when defining methods, because methods
are assumed to be public if no modifier is specified.

In the next few sections, we’ll cover some of these, as well as some of the other powerful
features that Groovy offers, starting with built-in assertions.

Language-Level Assertions
Assertions are a concept introduced to the Java language in JDK 1.4 that allow you to verify
application state at a certain point. Like Java, Groovy has an assert keyword.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 549

Assertions are primarily useful to avoid the scenario where code is executed under an
invalid state and, to this end, are a useful debugging tool. In terms of this book, assertions are
also useful for revealing what the current state of an executing Groovy program is. Listing A-2
shows an example of an assertion in action.

Listing A-2. Groovy Assertions

def num = 1
…
assert num == 1

Here we simply verify that the variable called num still has a value of 1 at the point of exe-
cution in the code. Assertions will be utilized throughout many of the following examples,
including in our coverage of Groovy strings, which we’ll cover next.

Groovy Strings
Groovy supports a concept found in many other languages such as Perl and Ruby called string
interpolation. Because this is rather a mouthful in Groovy-land, they’re simply (or comically,
depending on which way you look at it) known as GStrings.

A GString is just like a normal string, but it allows the embedding of variables within it,
using the familiar ${..} syntax found in many popular Java frameworks including Spring, Ant,
and an array of view technologies. The curly braces can be omitted if it is simply the variable
name that is required. Listing A-3 also demonstrates another powerful feature of Groovy’s
string support: multiline strings. These are defined with the triple-quotation syntax.

Listing A-3. GStrings in Action

def person = "John"

println """
${new Date()}

Dear $person,

This is a Groovy letter!

Yours Sincerely,
The XYZ Company
"""

550 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

On the first line of the listing, a variable called person is defined that is then later refer-
enced from the String itself. The multiline String can span several lines and includes all new
line characters, tabs, and spaces in its output. The resulting output of the listing is as follows:

Wed Jan 14 06:20:58 BST 2009

Dear John,

This is a Groovy letter!

Yours Sincerely,
The XYZ Company

Coming from Java, where every new line has to be closed with a quote and contain the
+ concatenation character, this example comes as rather a relief. This also brings us nicely to
another difference from Java in the way that Groovy interprets strings vs. characters. In Java,
a character is defined using the single-quotation syntax, while in Groovy it could represent
either a regular String (that is, one not of the GString variety) or a character. For example, the
declarations in Listing A-4 are all valid in Groovy, while in Java the first and third would pro-
duce compilation errors.

Listing A-4. String and Characters in Groovy

String hello = 'Hello' // a regular String
String greeting = "$hello World!" // a GString
def c = '\n' as char // A java.lang.Character new line character
char c = '\n' // the same as above

Believe it or not, there is yet another alternative for declaring strings in Groovy. It is known
as the slashy syntax and allows easy definition of regular expressions (regex) without the need
to introduce escape characters as with Java.

■Note Regular expressions are a way of doing pattern matching against strings. Commonly referred to
as regex, they define a set of matching operators that can be used to match almost any pattern in a string.
A full discussion of regex is beyond the scope of this book, but many references are available online about
the topic.1

This allows you to omit the backslash (\) escape character that cripples Java’s regex sup-
port. Consider the example in Listing A-5.

1. Java Regular Expressions: Taming the java.util.regex Engine by Mehran Habibi (Apress, 2004) is an
excellent book that covers the intricacies of regular expressions on the Java platform.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 551

Listing A-5. Groovy vs. Java Regex

def file = /C:\this\will\need\escaping\afile.pdf/
// This is what you need in Java
assert file ==~ "\\w{1}:\\\\.+\\\\.+\\\\.+\\\\.+\\\\.+\\.pdf"
// And here is how you do it in Groovy
assert file ==~ /\w{1}:\\.+\\.+\\.+\\.+\\.+\.pdf/

This example attempts to match a file reference on a Windows system. Since Windows
uses the backslash character in file references, it means you would need to escape every one of
these in the Java regex expression on line 3 twice—once because Java requires you to escape
the backslash character and again because so does regex!

But thanks to Groovy’s slashy syntax, on line 5 you are able to avoid this particular night-
mare by at least having to escape the backslash character only once.

In addition to the slashy syntax, Groovy’s regex support goes even further, with support for
specialized regex operators, some examples of which are shown in Listing A-6.

Listing A-6. Groovy Regular Expressions

1 import java.util.regex.*
2
3 // usage of the matching operator, which returns a Boolean
4 assert 'abababab' ==~ /(ab)+/
5
6
7 // Here the pattern operator is used
8 // to create a java.util.regex.Pattern instances
9 def pattern = ~/foo/
10 assert pattern instanceof Pattern
11
12 // The matcher operator allows you to create a
13 // java.util.regex.Matcher instance
14 def matcher = "cheesecheese" =~ /cheese/
15 assert matcher instanceof Matcher

The first example on line 4 uses the match ==~ operator, which will attempt to match the
entire string against the provided regex. Next, line 9 demonstrates how to create an instance of
java.util.regex.Pattern using the pattern operator.

Essentially, by starting a string with the ~ character, it creates the Pattern instance instead
of a String. The pattern operator is commonly seen applied directly before slashy strings in the
format ~/…/ but can in fact be applied to any string.

■Note It is important to notice the space between the equals sign and the ~ character that differentiates
the pattern operator from the find =~ operator on line 14.

552 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

Lastly, the find =~ operator on line 14 will find the first match in the supplied String and,
if used in an assignment as shown in the example, will return a java.util.regex.Matcher
instance. A full discussion on regular expressions is rather beyond the scope of this book; nev-
ertheless, what you have seen so far serves to introduce the capabilities Groovy has to offer in
terms of regex support.

The next section should be pretty interesting as we explore Groovy’s closure support. The
closure, as a construct, is beginning to get much traction among the software development
community as the benefits (and also the limitations of languages that don’t have them) have
started to become abundantly clearer.

Closures
Closures can essentially be seen as reusable code blocks (often called anonymous code blocks).
At the syntax level, they are a sequence of statements surrounded by curly braces. They can be
quite difficult to understand in the beginning at a conceptual level, but once you begin using
them, it becomes hard to imagine how you ever lived without them.2 Let’s take a look at the
basic example shown in Listing A-7.

Listing A-7. Simple Closure

def square = { it * it }
assert [1,4,9] == [1,2,3].collect(square)

The previous example is similar to creating a function pointer in C, although the behavior
of closures differs significantly. First you define a closure and assign it to a variable called
square that takes the default argument and multiplies it by itself. The default argument in
Groovy is called it and becomes useful for simple definitions.

The square closure is then passed to another of Groovy’s built-in methods called collect
that will collect each element from the list and apply the passed closure to its value. In this case,
the result is a list of numbers that represent the square root of each element in the original list.

Clearly, it’s useful to be able to pass blocks of code around in this fashion, but another use-
ful way to use closures is inline as an argument to a method. This is like using an anonymous
inner class in Java, except the syntax is significantly more elegant, as Listing A-8 demonstrates.

Listing A-8. Groovy step Method

def lastRevision = 0.9

0.1.step(lastRevision, 0.1) { currentRevision ->
 println(currentRevision)
}

2. Many people feel now is the time for Java to introduce closure support, and this may happen in the
future. See http://mindprod.com/jgloss/closure.html for information on why Java doesn’t currently
support closures.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 553

The previous code steps through all the revisions of an imaginary version control reposi-
tory and outputs each revision number. The last argument of the method is a closure, which is
executed on each iteration (or step, if we’re using the method’s verb).

■Note The step method itself takes three arguments. The last of these is a closure instance. Note how
Groovy allows the closure to be specified at the end of the expression.

Clearly, closures take some getting used to when coming from Java, but if you think of
them as a type of anonymous inner class, it will go a long way to aid your understanding. You’ll
see many more examples of their usage in the coming chapters as well as see them combined
with another powerful Groovy concept: builders.

In the next section, we’ll look at how Groovy greatly simplifies the Java collections API by
providing language-level constructs for common Java types, as well as one of its own.

Lists, Maps, and Ranges
Groovy contains first-class constructs for two of the most commonly used collections in Java:
List and Map.

This new syntax, combined with operator overloading and additional methods that use
closures (provided by Groovy to extend the Java collection API), is a powerful combination best
illustrated with some examples. See, for instance, Listing A-9.

Listing A-9. Collections in Action

1 // prints 1 2 3 separated by new lines to standard out
2 [1,2,3].each { num -> println num }
3 // create an empty list
4 def list = []
5 // use overloaded left shift operator to append items
6 list << 'one' << 'two' << 'three'
7 // check that we have 3 items
8 assert list.size() == 3
9 // Use Groovy's findAll method to find all words containing the letter "o"
10 assert list.findAll { item -> item.contains('o') }.size() == 2
11 // Merges a list into a string using the supplied string
12 assert list.join(',') == 'one,two,three'
13
14 // map of contact numbers
15 def contacts = [Fred : '903-0200-1565',
16 Wilma: '903-0207-7401']
17 contacts.each { key, value ->
18 println "calling $key on $value"
19 }
20 // add new contact

554 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

21 contacts.Dino = '903-0207-0349'
22 assert contacts.size() == 3

Here you can see various usages of Groovy lists and maps. First in line 2 there is an exam-
ple of using Groovy’s each method to iterate over a list of integer values:

2 [1,2,3].each { num -> println num }

The example calls each directly on the list definition and prints each element of the list
using println, resulting in this output:

1
2
3

Next, there is an interesting use of the left shift << operator to append elements to the list.
In Groovy, the left shift operator is generally available on all objects that have the concept of
appending such as lists, buffers, and streams:

6 list << 'one' << 'two' << 'three'

Groovy then checks the size of the list using the size method. The size method is interest-
ing in that even though it does exist for collections, it can be used on pretty much any object
that has the concept of size or length. Java is extremely inconsistent in its handling of size and
length, and there are different ways to obtain this information, depending on whether you are
working with strings, arrays, or collections. Groovy attempts to unify this into a single method:

8 assert list.size() == 3

Here, on line 10 Groovy’s findAll method is used on the list to locate all strings within the
list that contain the letter O. The closure passed to findAll is evaluated as the criteria on each
element of the list:

10 assert list.findAll { item -> item.contains('o') }.size() == 2

Another useful method in the toolbox is join, which allows you to merge any list or array
into a string using the passed arguments as the separator. Here you create a comma-separated
string of all elements in the collection:

12 assert list.join(',') == 'one,two,three'

The next example demonstrates Groovy’s built-in syntax for defining maps:

15 def contacts = [Fred : '903-0200-1565',
16 Wilma: '903-0207-7401']

Here you create a java.util.Map that has two elements representing contact information
for Fred and Wilma. Groovy allows you to omit the quotes around keys within the map syntax,
so the keys Fred and Wilma in the example translate into strings.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 555

■Note The map concept in Java is equivalent to what is known as a hash in many other languages. In fact,
the default implementation used is java.util.LinkedHashMap.

Sometimes you want to use something other than a string as the key and want to resolve
an object from the surrounding scope as the key. If this is the case, you need to surround the
key with brackets (…).

Lines 17–19 in the example demonstrate how you can use the each method to iterate over
a map in the same way as other collection objects, with the key and value as arguments to the
method. More interestingly, however, is the use of the dereference operator on line 21:

21 contacts.Dino = '903-0207-0349'

This will actually create a new key called Dino, with the value being the telephone number.
Why is this interesting? Well, it allows you to treat maps almost like dynamic objects. Speaking
of dynamic objects, there is a particular type of Groovy object called Expando.

Expando Objects
It is often useful to be able to create an object dynamically at runtime, particularly if it is not
a frequently used one that warrants a class definition. This is where Expando comes in handy.
Consider the example in Listing A-10.

Listing A-10. Expandos in Action

fred = new Expando()

fred.firstName = "Fred"
fred.lastName = "Flintstone"

fred.age = 45
fred.happyBirthday = {
 fred.age++
}

fred.happyBirthday()
assert fred.age == 46

As you can see, Expando allows you to programmatically define an object, its properties,
and its methods at runtime. This example creates an Expando object called fred and then sim-
ply goes about assigning some properties with some initial values. A method is defined by
setting a closure to a property that can be later called like a regular method.

So far, you’ve seen quite a range of Groovy features, and with that particular pun out of the
way, we’re going to move onto another type introduced by Groovy: ranges.

556 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

Ranges
Groovy supports the concept of inclusive and exclusive ranges at the language level. A range
consists of a left value and a right value, with a strategy for moving from left to right. Ranges can
be used on numbers, strings, dates, and any other object that implements the Comparable inter-
face and defines next and previous methods.

■Note The java.lang.Comparable interface is Java’s way of comparing two objects. It defines a single
method called compareTo(Object) that returns an integer. The method should return 1 if the passed object
is greater than this object, –1 if it is less than this object, and 0 if they are equal.

Listing A-11 shows some examples of using ranges in combination with Groovy’s
advanced switch statement.

Listing A-11. Ranges in Action

def person = Expando()
person.name = "Fred"
person.age = 45

def child = 0..16 // inclusive range
def adult = 17..<66 // exclusive range
def senior = 66..120 //

switch(person.age) {
 case child:
 println "You're too young ${person.name}!"
 break
 case adult:
 println "Welcome ${person.name}!"
 break
 case senior:
 println "Welcome ${person.name}! Take a look at our senior citizen
rates!"
 break
}

This example has three ranges plus Groovy’s advanced switch capabilities to print differ-
ent messages depending on the age of the user. Ranges are commonly used in Groovy as a
replacement for the traditional Java for loop using Groovy’s for..in syntax and in combina-
tion with the subscript operator.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 557

Listing A-12 shows how to use the for loop with a range applied to a String using the sub-
script operator.

Listing A-12. The Groovy for Loop and Ranges

def text = 'print me'
for(i in 0..<4) {
 println text[i]
}
assert 'print' == text[0..4]

Here, you’re looping through the first four characters of the supplied text (remember, the
previous example is an exclusive range) and printing out each character. The output of the for
loop equates to the following:

p
r
i
n

And that concludes this whirlwind tour of Groovy basics. You’ve explored a lot, and
although this section is by no means comprehensive, it should give you an idea of what
Groovy is capable of as a general-purpose language.

In the next section, you’ll start to explore the features that make Grails a possibility.
What you’ve seen so far is great, but there is much more to Groovy, making it one of the most
powerful dynamic languages available on the JVM today.

Groovy Power Features
The next sections are by no means a prerequisite for using Groovy, but they will help you
understand what makes Groovy so powerful when compared to some of its sister dynamic
languages that run on the JVM.

You’ll explore three features in particular detail:

• True object oriented programming

• Metaprogramming

• Builders

Everything Is an Object
Unlike Java, which mixes primitive and reference types, in Groovy everything is an object. How
does Groovy manage this while maintaining integration with Java? Well, before Java 5.0 was
even introduced with Generics and autoboxing, Groovy was doing this for you in Java 1.4.

558 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

When a primitive type gets passed into the Groovy world, it is automatically “boxed” into
its object equivalent, and vice versa. This allows Groovy to support some interesting concepts,
which we will cover in the following sections:

• Methods on primitives

• Operator overloading

• The Groovy truth

In this respect, Groovy is far closer to object-oriented languages such as Smalltalk than
Java, since even operators such as ==, !=, +, and – are translated into method calls at runtime.

■Note Groovy’s == operator differs from Java’s in that it does not evaluate object identity, but it delegates
to the object’s equals method. For object identity, Groovy introduces a special is method: left.is(right).

To get you on your way to understanding the implications and possibilities that true object
oriented programming offers, the first thing we’re going to look at is Groovy’s ability to support
methods on primitives.

Methods on Primitives

Since Groovy performs autoboxing at runtime, you automatically have all the methods avail-
able in the concrete class equivalent (the Java primitive type int becomes java.lang.Integer,
for example) as well as some additional ones provided by Groovy.

Combine this feature with Groovy’s closure support, and having methods on primitives
provides some interesting use cases. Listing A-13 provides various examples of calling meth-
ods on integers.

Listing A-13. Methods on Numbers

3.times {
 println it
}
// iterates from 3 to 9
3.upto(9) {
 println it
}
// iteratives from 3 to 9 in increments of 3
3.step(9,3) {
 println it
}

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 559

The previous examples provide a little taster of what allowing methods on primitive types
means to Java developers. For others, this may not seem so revolutionary, but it’s another
string to Groovy’s bow.

Operator Overloading

Operator overloading, which has a love-hate relationship in the world of C++, has been incor-
porated into the Groovy language in an extremely elegant fashion. As mentioned previously,
Groovy is a true object-oriented language, and this extends to the operators themselves. Oper-
ators in Groovy are just method calls that follow a naming convention.

Table A-1 lists the Groovy operators and their equivalent methods; to utilize operators,
simply add the necessary method to your object.

It doesn’t end here, however; Groovy also uses operator overloading to overload the
comparison operators. Table A-2 shows these operators and the methods or expressions they
evaluate to.

Table A-1. Groovy Operator Method Names

Operator Method

a + b a.plus(b)

a - b a.minus(b)

a * b a.multiply(b)

a / b a.divide(b)

a++ or ++a a.next()

a-- or --a a.previous()

a[b] a.getAt(b)

a[b] = c a.putAt(b, c)

a << b a.leftShift(b)

Table A-2. Groovy Comparison Operator Method Names

Operator Method

a == b a.equals(b)

a != b ! a.equals(b)

a <=> b a.compareTo(b)

a > b a.compareTo(b) > 0

a >= b a.compareTo(b) >= 0

a < b a.compareTo(b) < 0

a <= b a.compareTo(b) <= 0

560 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

In addition, Groovy provides a number of built-in operators on common Java types that let
you work with them in intuitive ways. As an illustration, you can use the left shift << operator to
do the following:

• Append an item to a java.util.List

• Output data to a java.io.Writer or a java.io.OutputStream

• Append characters onto a java.lang.StringBuffer

Groovy provides many more such operators across the JDK classes—too many to list
here—so it is worthwhile to explore what is available in terms of operators within the Groovy
documentation and source code. As your knowledge of Groovy grows, you will find yourself
using them more and more and even providing your own.

The Groovy Truth

What is true and what isn’t is very different in Groovy in comparison to Java, but not in a
bad way. The phrase “the Groovy Truth” was coined by Dierk Koenig, Groovy committer and
author of Groovy in Action3 to differentiate Groovy’s concept of what is true and what is not. As
an example, the following, by no means comprehensive, list can be passed to if statements in
Groovy and will evaluate to false:

• A null reference

• An empty or null string

• The number zero

• A regex Matcher that doesn’t match

This makes for infinitely cleaner code and decreases the burden on the programmer to
make sure that null checks are valid, that they’re checking that a string is not null and is not
zero length (boy, that’s a mouthful), and that they’re checking a whole hoard of other possibil-
ities that cause error-prone code.

In the context of web applications, this is extremely useful given the amount of string eval-
uation necessary (remember, request parameters come in as strings).

Using the Groovy Truth, the if, while, and assert statements become rather more intelli-
gent than their equivalents in Java. However, it simply wouldn’t be Groovy if it wasn’t taken
even further. In Java, the switch statement is rarely used. Why? Well, it’s fairly limiting in that it
operates only in conjunction with the int or char primitive types (as well as Enum since Java 5).

In Groovy, however, the switch statement is your best friend and one of the more fre-
quently used constructs. Groovy’s switch accepts any object that implements the method
isCase. Default implementations of isCase are provided for many of the commonly used types;
if none is provided, then isCase simply delegates to the equals method. Listing A-14 shows the
switch statement in action and how it can be used in conjunction with a variety of types.

3. Groovy in Action by Dierk Koenig et al. (Greenwich, CT: Manning Publications, 2007)

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 561

Listing A-14. Usage of Groovy Switch

 switch (x) {
 case 'Graeme':
 println "you're Graeme!"
 break
 case 18..65:
 println "ok you're old enough"
 break
 case ~/Gw?+e/:
 println 'your name starts with G and ends in e!'
 break
 case Date:
 println 'got a Date instance'
 break
 case ['John', 'Ringo', 'Paul', 'George']:
 println "You're one of the Beatles! "
 break
 default:
 println "That is something entirely different"
 }

The previous example is just a taster of what is possible with the Groovy switch. Try doing
some experiments of your own to get used to the behavior of switch and how isCase behaves
for each type.

Given what you’ve seen so far of Groovy’s ability to dynamically dispatch operators and
methods and box primitive types in objects, you would think that we’ve covered the parts that
make Groovy truly dynamic. Not quite. In the next section, we’ll cover Groovy’s metaprogram-
ming support, which makes Groovy extremely compelling and powerful and helps put it on an
even keel with languages such as Ruby and Python.

Metaprogramming
Any concept that has a colorful name such as metaprogramming sounds scary, but fundamen-
tally metaprogramming in Groovy is the ability to add behavior to classes at runtime. You’ve
seen this in action many times already with Groovy’s seemingly magical ability to add new
methods to existing Java classes.

Given that Java’s class-loading mechanism dictates that classes, once loaded, cannot be
changed, you may be wondering how this is possible at all.

What Groovy does is that for every class loaded by the Groovy runtime there is an associ-
ated MetaClass that is used when dispatching methods to the class itself. Think of it in terms
of a proxy that delegates to the actual implementation. The remarkable thing with Groovy,
however, is that it doesn’t just cover method dispatching. Constructors, fields, operators
(because of operator overloading), properties, static, and instance methods can all be added,
intercepted, or modified at runtime thanks to Groovy’s Meta Object Protocol (MOP).

Outside of Groovy, the way this has been done is through software tools such as AspectJ,
an implementation of Aspect-Oriented Programming (AOP) for Java, which does byte code
weaving. In Groovy, byte code manipulation is unnecessary, and through Groovy’s meta

562 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

facility, Grails is able to perform a lot of magic in one line of code that would otherwise have
taken reams of complicated Java code.

None of Grails’ classes extends any special framework-specific classes, and the necessary
behavior is instead injected into your classes at runtime via the MetaClass. Let’s step through a
few examples of how Groovy makes all this possible through its metaprogramming APIs.

Inspecting the MetaClass

As mentioned, every java.lang.Class has an associated groovy.lang.MetaClass instance. The
MetaClass for a given Class can be obtained using the metaClass property on any instance. For
example, if you wanted to find out all the methods available on a given instance, you could use
the metaClass property, as shown in Listing A-15.

Listing A-15. Inspecting Methods at Runtime Using the MetaClass

def text = "hello world"
text.metaClass.methods.each { method ->
 println method.name
}

The code in Listing A-15 uses the methods property of the MetaClass, which returns a list of
groovy.lang.MetaMethod instances, to output each method name, resulting in output such as
the following:

replaceAll
replaceFirst
split
split
startsWith
startsWith
subSequence
substring
substring
toCharArray
toLowerCase
…

As well as the methods property, a properties property will obtain a list of groovy.lang.
MetaProperty instances representing each property available on an instance. Occasionally,
you’ll just want to find whether an individual instance has a particular method or property and
act accordingly. Listing A-16 shows how you can use the respondsTo and hasProperty methods
to achieve this.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 563

Listing A-16. Using respondsTo and hasProperty

def text = "hello world"
if(text.respondsTo("toUpperCase")) {
 println text.toUpperCase()
}
if(text.hasProperty("bytes")) {
 println text.bytes.encodeBase64()
}

The technique in Listing A-16 is often referred to as duck typing, a term that originates
from the saying, “If it walks like a duck and quacks like a duck, I would call it a duck.” In other
words, in dynamic languages, objects can fulfill an implicit contract through duck typing, with-
out needing to implement any special interface, as you would be required to do in a statically
typed language like Java.

Adding Behavior at Runtime

Much of the Grails magic involves adding behaviors, in the form of methods, properties, and
constructors, at runtime. In early versions of Grails, this was done through custom MetaClass
implementations. However, this soon grew tedious, and the developers of Grails ended up cre-
ating a special kind of MetaClass called the ExpandoMetaClass.

ExpandoMetaClass provided a DSL for modifying MetaClass instances, and after stabilizing
from its roots in the Grails project, ExpandoMetaClass soon became part of the Groovy language
itself. Adding methods using ExpandoMetaClass is incredibly easy. Listing A-17 shows an exam-
ple that adds a method called swapCase to the String class.

Listing A-17. Adding Methods to Classes at Runtime Using ExpandoMetaClass

String.metaClass.swapCase = {->
 def sb = new StringBuffer()
 delegate.each {
 sb << (Character.isUpperCase(it as char) ?
 Character.toLowerCase(it as char) :
 Character.toUpperCase(it as char))
 }
 sb.toString()
}
assert "Hello".swapCase() == "hELLO"

As you can see from Listing A-17, you can add or override methods at runtime by assigning
a closure to a property of the MetaClass. Within the scope of the closure, the delegate variable
is equivalent to this in a standard method.

564 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

This is exactly how the APIs such as GORM, discussed in Chapter 10, work. Grails inspects
all the domain classes within a project and automagically adds new behavior to each one. Since
the Grails runtime constructs a Spring ApplicationContext, closures can be used to inject
methods that interact with Spring and Hibernate.

Listing A-18 shows an example of how the save method looks in Grails internally.

Listing A-18. Adding the save Method at Runtime

def t = new HibernateTemplate(applicationContext.getBean("sessionFactory"))
for(domainClass in application.domainClasses) {
 domainClass.metaClass.save = { t.saveOrUpdate(delegate) }
}

The real implementation is a bit more involved than that, but at a simple level Listing A-18
serves to demonstrate the concept. Of course, Groovy doesn’t allow the addition of just instance
methods but static methods, constructors, and properties too. Listing A-19 shows a few examples
of adding different kinds of behaviors.

Listing A-19. Enhancing the Behavior of a Class

def dateFormat = new java.text.SimpleDateFormat("MM/dd/yyyy")
// Add a static method
Date.metaClass.static.format = { fmt -> dateFormat.format(new Date()) }
// Add a property
String.metaClass.getDate = {-> dateFormat.parse(delegate) }
// Add a constructor
String.metaClass.constructor { Date d -> dateFormat.format(d) }

String today = Date.format()
println "Today is $today"
Date todaysDate = today.date
today = new String(todaysDate)
println "Today is still $today"

As you can see from Listing A-19, with Groovy’s metaprogramming capabilities you
can modify and extend pretty much any aspect of a class behavior. However, it is not just
classes that can be altered. Groovy also supports per-instance modifications of behavior.
In Listing A-19, the changes to the MetaClass apply globally because the code is using the
metaClass property of the java.lang.Class instance that is being modified.

To apply behavior to only one instance, you can use the metaClass property of the
instance, in which case only that instance will be altered. This has several advantages; the
major one is that changes to behavior can be isolated to the thread that the instance is created
in. Global modifications apply to all threads, so should only ever be made once at start-up time
to avoid inconsistent behavior.

Listing A-20 shows an example of adding the swapCase method from Listing A-17 to an
instance of java.lang.String.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 565

Listing A-20. Using Per-Instance Metaprogramming

def text = "Hello".

text.metaClass.swapCase = {->
 def sb = new StringBuffer()
 delegate.each {
 sb << (Character.isUpperCase(it as char) ?
 Character.toLowerCase(it as char) :
 Character.toUpperCase(it as char))
 }
 sb.toString()
}
assert text.swapCase() == "hELLO"

The examples of metaprogramming you have seen so far are neat, but many languages
(including JavaScript and Python) allow you to add methods at runtime. However, Groovy
belongs to a select group of languages that takes this concept even further by allowing you to
modify the semantics of a program by intercepting method dispatch itself. In the next section,
we’ll cover how to achieve this.

Intercepting Method Dispatch

You can intercept method dispatch in Groovy in a number of ways. If you’re the author of
the class, then a trivial way is just to override the invokeMethod method. When you implement
invokeMethod, Groovy will route all calls to methods that don’t exist to your invokeMethod
implementation.

Listing A-21 shows a trivial implementation that simply prints out the current method
name, instead of throwing an exception, if a method doesn’t exist.

Listing A-21. Overriding invokeMethod

class InterceptAndPrint {
 def out
 InterceptAndPrint (out) { this.out = out }
 def invokeMethod(String name, args) {
 out << name
 }
}
def i = new InterceptAndPrint (System.out)
i.hello()
i.world()

As you can see, by implementing invokeMethod, you can change the way Groovy’s method
dispatch is represented at runtime. You can achieve the same thing with properties by overrid-
ing the getProperty(name) and setProperty(name,value) methods.

566 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

Intercept, Cache, Invoke

As you saw in the previous section, you can intercept method dispatch by overriding the
invokeMethod method. This is a pretty powerful pattern because you’re injecting new behav-
ior into your application. However, it has its overheads because Groovy has to go through
various layers of dispatch logic before eventually reaching the invokeMethod method.

Another approach is to take advantage of code synthesis using the Intercept, Cache, Invoke
pattern. The basics steps are as follows:

• Intercept: Intercept failed method dispatch using the methodMissing method.

• Cache: Create a new method on the fly, caching the behavior in the MetaClass.

• Invoke: Invoke the new behavior and return the result.

The advantage of this approach is that many new methods can be created at runtime.
These new methods will incur a cost on first creation, but subsequent calls to the same method
will be quicker. This is the technique that GORM uses to implement dynamic finders, a subject
discussed in Chapter 10.

Listing A-22 shows an example of how you could implement your own version of dynamic
finders using raw SQL instead of Hibernate using the methodMissing hook.

Listing A-22. Implementing Intercept, Cache, Invoke

url = "jdbc:hsqldb:mem:testDB"
driver = "org.hsqldb.jdbcDriver"
user = "sa"
pass = ""
Album.metaClass.static.methodMissing = { String name, args ->
 if(name.startsWith("findBy") && args) { // intercept
 def propertyName = name[6..-1]
 propertyName = propertyName[0].toLowerCase() + propertyName[1..-1]

 def newMethod = { Object[] varArgs ->
 def results = []
 def sql = groovy.sql.Sql.newInstance(url,user,pass, driver)
 sql.eachRow("select * from ${ Album.name} where $propertyName=?",
 [varArgs[0]]) {
 results << new Album (title:it.title, genre:it.genre)
 }
 return results
 }
 Album.metaClass."$name" = newMethod // cache
 return newMethod.call(args) // invoke
 }

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 567

 else {
 throw new MissingMethodException(name, Album,args)
 }
}

albums = Album.findByTitle("The Backroom")
albums.each {
 println it.title
 println it.genre
}

The steps of the Intercept, Cache, Invoke pattern are highlighted in bold in Listing A-22.
Essentially, using methodMissing, you can intercept method dispatch, and if the method name
starts with findBy, then a new method is automatically created that uses Groovy’s SQL APIs
to execute a query and return the results. The new behavior is then cached by creating a new
method using the MetaClass at runtime:

Album.metaClass."$name" = newMethod // cache

This will ensure that the next time the method is invoked, Groovy doesn’t have to go
through the various phases of dispatch logic before giving up and calling methodMissing.
Finally, the cached method is then invoked, resulting in the new behavior being executed:

return newMethod.call(args) // invoke

And that is how you implement GORM-style dynamic finders using raw SQL. Of course,
the implementation in Listing A-22 is pretty limited compared to GORM, but you get the
general idea.

The MetaClass concept in combination with Groovy’s advanced syntax is also what
enables a concept called builders. In the next section, we’ll explain what builders are, what’s
the driving force behind their conception, and why they’re so important to the overall picture.

Understanding Builders
A builder is an object that implements the builder pattern. The Gang of Four’s book4 intro-
duces one particular pattern known as the builder pattern. The idea behind it is to construct
complex objects from another object or builder. For example, you may need to build a complex
markup hierarchy with the root object being the document itself. A builder would encapsulate
the logic to construct, or build, this object for you.

The builder pattern is extremely difficult to implement in Java because of the limitations
of the syntax. (Some would say it is impossible and that current implementations are merely
mimicking a true builder, although efforts have been made in projects such as Commons CLI
and IntelliJ IDEA PSI.) Groovy, however, has no such problem, thanks to its support for named
arguments, closures, and optional parentheses.

4. Design Patterns: Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides (Addison-Wesley, 1995)

568 A P P E N D I X ■ T H E G R O O V Y L A N G U A G E

■Note Groovy doesn’t support true named arguments but allows the method to specify a map as the only
argument, hence mimicking this capability. This limitation is mainly down to Java byte code itself, which does
not associate names (only types) with method parameters.

Groovy ships with a number of builders (excuse the pun) built-in, including but not lim-
ited to the following:

• The MarkupBuilder for constructing, typically XML, markup

• The DOMBuilder for constructing W3C DOM trees

• The AntBuilder to provide scripting for Apache Ant

• The SwingBuilder for constructing Swing GUI interfaces

As an example, take a look at the usage of the MarkupBuilder, shown in Listing A-23, which
allows construction of markup documents such as XML or HTML.

Listing A-23. MarkupBuilder in Action

// construct builder that outputs to standard out
def mkp = new groovy.xml.MarkupBuilder()

// write markup
mkp.authors {
 author(name:'Stephen King') {
 book(title:'The Shining')
 book(title:'The Stand')
 }
 author(name: 'James Patterson') {
 book(title:'Along Came a Spider')
 }
}

This example demonstrates the construction of a groovy.xml.MarkupBuilder instance
using standard out and the usage of closures and named arguments to represent the markup.
Listing A-24 shows the result.

A P P E N D I X ■ T H E G R O O V Y L A N G U A G E 569

Listing A-24. Result of MarkupBuilder

<authors>
 <author name="Stephen King">
 <book title="The Shining" />
 <book title="The Stand" />
 </author>
 <author name="James Patterson">
 <book title="Along Came a Spider" />
 </author>
</authors>

It is interesting at this point to take a closer look at Listing A-23. In this example, we passed
an “anonymous” closure to the authors() method of the MarkupBuilder instance, but consider
the possibility of assigning this closure to a variable and then passing as an argument the same
closure to different builders, one that renders XML and another that outputs the same data as
a PDF document or renders it in a GUI.

Unlike the XML produced in Listing A-24, the builder code in Listing A-23 is pure Groovy
code and can therefore leverage the full power of the language: conditionals, looping, referenc-
ing, inheritance, and so on.

Builders are an extremely powerful concept, and if you’re willing to delve into some
Groovy development by extending the BuilderSupport class to create your own builders, you
can create some pretty amazing constructs that could end up as domain-specific languages
within your application.

Grails utilizes builders all over the place, from constructing Hibernate criteria to rendering
markup to the HTTP response. Builders are a key element in the conciseness and power that
Grails brings to web application development.

Summary
That completes this dash through the Groovy language. As we have already admitted, it was by
no means comprehensive. Groovy has many more fantastic features; it is really worth investing
the time to learn more about it. But this quick overview should give you an idea of why some of
Groovy‘s features are so important to Grails and how they make life easier developing today’s
web applications.

You saw that Groovy looks pretty much like Java at first glance, allowing a smooth transi-
tion into the new world of dynamic programming. Since Groovy is fully integrated with the Java
platform and works directly on JDK objects, your investment in learning Java and your experi-
ence with the platform are fully protected.

What’s new is that Groovy gives you more immediate control over types such as lists and
maps. New concepts such as closures and ranges complete the picture. The combination of
syntax enhancements, new types, improvements to JDK classes, and metaprogramming leads
to an idiomatic Groovy style that is both simple and powerful.

571

Index

■Symbols
_album.gsp template

adding album art to, 192

buy action, 211

implementing, 180

with permissions working, 440

_albumList.gsp template, 181

* (asterisk)

as spread operator, 259

as wildcard, 150, 197, 417

<cache:text> tag, 382

${...} syntax, 111

?: (Elvis operator), 165

<extend-classpath> element, 326

<g:applyLayout> tag, 215

<g:createLink> tag, 475

<g:formRemote> tag, 175–176

<g:link> tag, 154

<g:message> tag, 263

<g:paginate> tag, 263

<g:remoteField> tag, 193–194, 197

<g:remoteLink> tag, 173–174, 179, 193

<g:uploadForm> tag, 87

<jsec:hasAllRoles> tag, 432

<jsec:hasPermission> tag, 439

<jsec:hasRole> tag, 432

<jsec:isLoggedIn> tag, 431

<jsec:isNotLoggedIn> tag, 431

<jsec:lacksPermission> tag, 439

<jsec:principal /> tag, 432

<media:player> tag, 442

<music:albumArt> tag, 191

<%...%> syntax, 109

<%=...%> statement, 110

_post.gsp template for blog plugin, 401

_recommendations.gsp template, 230

?. (safe deference operator), 112

_searchResults.gsp template, 196–197

*. (spread dot) operator (Groovy), 385

<sysprops> element, passing system
properties with, 327

_welcomeMessage.gsp template, 177

■Numerics
404 response codes, custom mapping for,

154

500 response code, mapping for, 153

■A
abstract beans, 495–496

abstract property, bean argument, 496

ACCEPT header

content negotiation with, 452–457

reliability of, 456–457

access, restricting

based on roles, 432

through URL mappings, 446–448

with <jsec:lacksPermission> tag, 439

accessControl method, 428

accessing

business logic within application, 298–304

request attributes, 68–70

request parameters, 73

Acegi plugin, 416

ACID properties of databases, 295

action names, removing from URL mapping,
145

572 ■I N D E X

action states (flows)

checking login details with, 203, 212–216

gTunes, 222–227

overview of, 202

reusing with closures, 227–231

ActiveMQ (Apache)

configuring with BeanBuilder, 500–502

installation directory, 499

JAR files, 501

overview of, 498–499

Queues section, 503

setting up, 499–500

web console, 500

ActiveRecord (Rails), GORM compared to,
266

addJob method, 355

Address class

applying constraints to, 542

code for, 537, 539–540

column annotation, 538

creating, 536–537

entities fields, 537

id property, 538

version property, 538

Address domain class, defining, 210–211

AddressConstraints.groovy script, 542

addTo* method, 253

after advice (AOP), 90, 91

after attribute (Ajax), 177–178

afterView filter, 418

Ajax

asynchronous form submission, 175–177

effects and animation, adding, 193

enabling on form fields, 193–197

event handling, 178–179

executing code before and after calls,
177–178

flow of request, 172

HTML anchor tag, creating, 173–174

login request, handling, 176

overview of, 171

performance and, 197–198

provider, changing, 174–175

remote linking, 179–193

XMLHttpRequest object and, 171–173

album art, displaying, 182–193

Album Controller, display action, 213

Album domain class

creating, 23

price property, 209

album-art plugin example

adding method to all controllers, 395–396

creating, 391

dependencies, 392

getArt() method and, 396

providing metadata to, 393

structure of, 392

updating to use simple-cache plugin, 394

AlbumArtKey cache key class, 188

AlbumArtService template

creating, 183

enabling caching, 188

full code for, 188–190

AlbumController

create action, 31

creating, 24

delete action, 29

display action, 181

edit action, 29

index action, 28

list action, 28

save action, 31, 77

show action, 28

update action, 30

_album.gsp template

adding album art to, 192

buy action, 211

implementing, 180

with permissions working, 440

573■I N D E X

Find it faster at http://superindex.apress.com

albumList template, rendering, 132

_albumList.gsp template, 181

AlbumPayment class, 210, 433

AlbumPermission class, 437–438

AlbumService class, 480

all format

content negotiation with ACCEPT header
and, 456

marshaling objects to JSON, 463

allowedMethods property, 85–86

Amazon web services

creating, 183–185

setting up, 182–183

testing, 185–187

animation, adding with Ajax, 193

anonymous code blocks, 552

Ant (Apache)

Gant compared to, 310

integration with, 325–327

overview of, 313

AntBuilder (Groovy), 568

AOP (Aspect-Oriented Programming)

after advice, 91

before advice, 90–91

security and, 417

Apache

See also ActiveMQ; Ant

Commons HttpClient project, 473

Ivy, dependency resolution with, 327–330

Appear effect (Scriptaculous library), 193

appender

configuring, 308

using, 309

appending, 554

application layer caching, 373

application reload events, plugins and,
385–387

ApplicationContext, 379

ApplicationContextAware instance, 489

application-layer security

filters, 417–418

JSecurity plugin

authentication realms, 419–420

authentication, implementing with,
422–427

filters, 427–429

overview of, 416

permission-based security,
implementing, 433, 446

role-based security, implementing,
429–430

roles and permissions, 421

subjects and principals, 420

view, securing, 431–432

working with, 421

applications

See also gTunes application

controller, creating, 8–10

creating, 7

deploying, 41

modularizing with plugins, 397–406

object-oriented, and domain model, 45

ren-war command, 41

running, 13

running tests, 12–13

steps in creating, 7

structure of, 7

testing code, 10–11

with WAR file, 41–42

applying constraints to URL mappings,
149–150

arguments

paginate tag, 129

redirect method, 74

around advice (AOP), 90

artefact types, 376–379

ArtefactHandler interface, 377–378

artefacts, supplying with plugins, 373–374

Artist class, unit test for, 61

574 ■I N D E X

ArtistSubscription class, 505–506

Aspect-Oriented Programming (AOP)

after advice, 91

before advice, 90–91

security and, 417

assertions

overview of, 548–549

verifying flow state with, 236–244

assigned generator, 530–531

association mapping, changing, 521–524

associations

data binding and, 81–82

GORM, overview of, 252–253

one-to-many, 24, 54–56, 521, 522–523

one-to-one, 53–54

many-to-many, 523–524

many-to-one, 81, 521

performance tuning and, 278–281

querying with criteria, 260

relationship management methods,
253–254

SortedSet, 252

transitive persistence, 254

asterisk (*)

as spread operator, 259

as wildcard, 150, 197, 417

asynchronous e-mail notifications, 511–513

asynchronous form submission, 175–177

Asynchronous JavaScript Technology and
XML. See Ajax

Atom standard

creating feeds, 473–476

link discovery, 476–477

attach() method, 276

attacks, securing against

batch data binding, 413–414

cross-site scripting, 409–412

DoS, 412

Groovy injection, 409

SQL or HQL injection, 407–409

attributes

GSP, 108

request

Java servlets compared to Grails
controllers, 69

redirects and, 71

standard, 68

audit-logging plugin, 368

authenticate method, 422, 424–425

authentication

definition of, 407, 417

implementing with JSecurity plugin,
422–427

realms, 419–420

Authentication plugin, 416

AuthFilters class

overview of, 427–428

security URI within, 447

authorization, 407, 416

AuthRealm class, 422–423, 438

automatic time stamping, 288

automating deployment to Tomcat, 317–320

autowiring

configuring beans for, 488

overview of, 291, 379

Axis 2 plugin, 479

■B
Bash shell, JAVA_OPTS, setting in, 300

BasicDataSource class, 492

batch data binding, vulnerability to attacks,
413–414

batch fetching, 281–282

bean scopes, 496–497

BeanBuilder domain-specific language
(DSL)

abstract beans, 495–496

bean scopes, 496–497

configuring BeanBuilder with, 500–502

defining beans, 491–492

dynamically creating beans, 497–498

575■I N D E X

Find it faster at http://superindex.apress.com

factory beans, 493–495

inner beans, 495

overriding beans, 492–493

overview of, 490–491

providing Spring beans, 379–382

beans

See also Spring beans

configuring for autowiring, 488

DataSource, overriding, 493

dynamically creating, 497–498

inner, 495

managing definitions with Grails, 490

streamingService

creating, 515

using, 516

before advice (AOP), 90–91

before attribute (Ajax), 177–178

behaviors, adding at runtime, 563–565

belongsTo property, 54, 254

binary response, writing, 89

bind errors, dealing with, 13

bindData method, 80–81

binding, 109

blog plugin example

adding metadata to, 397

create.gsp view, 402–404

creating, 397

directory structure of, 398

list.gsp view, 399–401

Post domain class, 398

PostController, 399

_post.gsp template, 401

URL mapping to customize layout of, 401

blog posts in gTunes application, creating,
404–405

blog-type URL mapping, 149

Blowfish encryption codec class, 414–415

BootStrap classes, populating database with,
364–365

Bootstrap.groovy script, 317

bootstrapping Grails from command line,
317

browsers, older, and ACCEPT header,
456–457

build system, Gant and

bootstrapping Grails from command line,
317

command-line variables, 313–314

documenting scripts, 315–316

overview of, 310–311

parsing command-line arguments,
314–315

reusing Grails scripts, 316

scripts, creating, 312–313

build.xml file, 325

builders (Groovy), 567–569

BuilderSupport class, 569

built-in operators (Groovy), 560

built-in tags. See tags, built-in

business logic, accessing within application,
298–304

“Buy” button, disabling, 439

buyFlow

defining, 212

full code for, 240–244

■C
cache key, 187

<cache:text> tag, 382

caching

application layer, 373

content-level, 382

in GORM, 282–284

return value of blocks of code using
closures, 381

caching pattern, 380

caching solution, Ehcache, 187

calling methods on integers, 558

cascade behavior, 254

checkBox tag, 120–121

chooseGiftWrapFlow flow, 206–207

576 ■I N D E X

classes

See also domain classes

Address

applying constraints to, 542

code for, 537, 539–540

column annotation, 538

creating, 536–537

defining, 210–211

entities fields, 537

id property, 538

version property, 538

AlbumArtKey cache key, 188

AlbumPayment, 433

AlbumPermission, 437–438

AlbumService, 480

Artist, 61

ArtistSubscription, 505–506

AuthFilters, 427–428, 447

AuthRealm, 422–423, 438

BasicDataSource, 492

BootStrap, populating database with,
364–365

BuilderSupport, 569

codec, 414–416

ControllerUnitTestCase, 91–93

CreditCardCommand, 233

declaring, 548

DefaultMessageListenerContainer, 504

GrailsApplication, 375–376

GrailsTestUnitCase, 61

GrailsUrlMappingsTestCase, 155–158

Groovy

BuilderSupport, 569

groovy.lang.Script, 548

GroovyShell, 409

Hibernate, Session, 266–267

java.text.MessageFormat, 164–165

java.util.ResourceBundle, 161

LoggingFilters, 417

LoginCommand, 102–104, 425–426

MessageListenerAdapter, 503

MetaClass, 384, 562–563

methods, adding to, 384

MonetaryAmount, 526

org.springframework.mock.web.MockHtt
pServletResponse, 92

Person, 51–53

Realm, 419

SampleController, 65–66

SecurityUtils, 420

Song, 46, 62

SongController, stream action, 513

StoreService

creating, 290

purchaseAlbums method, 293–294

storeService property, 294–295

StreamingMarkupBuilder, 322

StreamingService, 514–515

SubscriptionTagLib

implementing, 507

testing, 508–509

TagLibUnitTestCase

using, 508

transactional service, 512

UrlMappings, 155–158

User, 347, 535

UserController, 416

UserControllerTests, 100

ClassPathXmlApplicationContext instance,
489

clear() method, 269–270

clearErrors() method, 48

clearing session, 269–270

client storage, flows and, 204–205

clients, calling SOAP from, 482–484

closures

caching return value of blocks of code
using, 381

Groovy, 552–553

577■I N D E X

Find it faster at http://superindex.apress.com

reusing action states with, 227–231

Cobertura (Source Forge), code coverage
with, 330–331

code, executing before and after calls,
177–178

code blocks, reusable, 552

code coverage, with Cobertura, 330–331

code synthesis, 566–567

codec classes, 414–416

collect tag (GSP), 114–115

column name mapping, changing, 520–521

com.sun.management.jmxremote system
property, 300

command line, bootstrapping Grails from,
317

command objects

defining, 82–83

using, 83–84

using with flows, 231–235

command-line arguments, parsing, 314–315

command-line interface, 6

command-line variables, 313–314

commands

create-app, 7

create-controller, 8, 20

create-domain-class, 18, 95

create-plugin, 370

create-script, 312

create-tag-lib, 191, 373

create-unit-test, 92

gant, 311

generate-controller, 27

grails, 34

grails console, 455

grails create-service, 183

grails war, 362

help, 6, 315

install-plugin, 369

install-plugin -global, 369

JSecurity plugin, 419

list-plugins, 367, 369

package-plugin, 389

for plugin discovery, 367–369

for plugin installation, 369–370

plugin-info, 368–369

release-plugin, 390–391

run-app, 13

run-war, 41

set-version, 362

test-app, 12–13, 61

uninstall-pluginl, 370

war, 41

Commons HttpClient project (Apache), 473

Company class, transient property, 50

company table, 50

compilation paths, 314

composite identifiers, using, 531–532

composition, 59–60

Config.groovy file

environment-specific configuration, 306

locations setting, 310

log4j property, 306–309

overview of, 305–306

configuring

ActiveMQ with BeanBuilder, 500–502

assigned generator, 531

beans for autowiring, 488

composite identifier, 531

data sources

DataSource.groovy file, 35–37

JNDI, 39

MySQL database, 37–39

overview of, 34

Ehcache Spring bean, 187

GORM

custom dialect, 264–265

Hibernate properties, 265

overview of, 263

SQL logging, 264

578 ■I N D E X

configuring (continued)

Grails

environment-specific configuration,
306

externalized configuration, 310

logging, 306–309

overview of, 305–306

stack trace filtering, 309

Grails build in Hudson, 334

Grails installation in Hudson, 332

hilo generator, 530, 530

Mail plugin, 346

confirming purchase, 237

confirmRegistration view, 349

Connect to Agent dialog box (JConsole), 300

constraints

description of, 21

domain class with, 166

using with POJO entities, 541–542

constraints block, URL mappings, 144,
149–150

constraints property (domain class), 46, 150

consuming JMS messages with Spring,
503–505

container, deploying to, 361–362

content negotiation (REST)

overview of, 452

view and, 459–460

with ACCEPT header, 452–457

with CONTENT_TYPE header, 457–458

with file extensions, 458

with request parameters, 459

content-level caching, 382

contentType directive, 109

CONTENT_TYPE header, content
negotiation with, 457–458

continuous integration with Hudson,
331–335

controllers

See also specific controllers

binary response, writing, 89

command objects

defining, 82–83

using, 83–84

creating, 8–10

data binding

associations and, 81–82

bindData method, 80–81

Errors API and, 79–80

file uploads and, 86–89

overview of, 77–78

to multiple domain objects, 80

validating incoming data, 78–79

default index action of, 10

default action, setting, 65–67

dynamic scaffolding and, 19–21

dynamically mapping to, 451

generating, to implement CRUD
functionality, 27–31

home page, creating, 94–95

HTTP method restrictions, 85–86

index action, 10

injecting service instance into, 291

IO and, 86

logging, 67–68

login form, creating, 96–97

login process, testing, 104–106

LoginCommand class, 102–104

mapping to view for particular, 148

methods, adding to, 384

model, creating, 75

names, removing from URL mapping, 145

overview of, 65

prototyped, 65

redirecting request, 73–74

registration code, testing, 100–102

registration, implementing, 97–100

rendering text, 73

request attributes, accessing, 68–70

579■I N D E X

Find it faster at http://superindex.apress.com

request inputStream, reading, 89

request parameters, accessing, 73

running tests on, 12–13

scopes

flash, 71–72

overview of, 70

templates, rendering, 77

test suites, 10–11

testing, 91–93

User domain class, creating, 95–96

using messageSource bean in, 169

view

finding, selecting, and rendering, 76

security with JSecurity plugin, 431–432

withFormat method, 453–454, 459

ControllerUnitTestCase class, 91–93

Convention over Configuration

Custom Database Mapping DSL, 51

URL mapping and, 143

conventions, dynamic Spring beans using,
382–383

conversation scope (flows), 204, 206–208

converters, marshaling objects to XML with,
460–463

count() method, 250–251

countBy* method, 256

c:out tag (JSP), 110

create action (AlbumController), 31

create operation, 21–23

Create Song page, 21, 25

create.gsp view

for blog plugin, 402–404

description of, 33

createAlbum() method, 83

create-app command, 7

create-controller command, 8, 20

createCriteria method, 257

create-domain-class command, 18, 95

createLink and createLinkTo tags (GSP),
118–119

create-plugin command, 370

create-script command, 312

create-service target, 290

create-tag-lib command, 191, 373

create-unit-test command, 92

credit card details, entering, 231–235

CreditCardCommand class, 233

CreditCardCommand object, specifying
validation messages for, 233

criteria queries (GORM), 257–261

cron expressions

examples of, 353

fields, 351

special characters, 352

cross-site scripting (XSS) attacks

HTML escaping and, 409–411

URL escaping and, 411–412

CRUD (Create, Read, Update, Delete)
applications

create operation, 21–23

delete operation, 26

read operation, 23–25

scaffolding and, 17

update operation, 25

currencySelect tag, 122

currentSession() method, 269

Custom Database Mapping DSL, 51–53

custom tags

basics of, 138–139

creating, 136–137

tab library, creating, 137–138

testing, 139–141

custom view, selecting, 76

customizing WAR file, 363

■D
DAO (Data Access Object) layer, GORM and,

256

data

exporting to XML, 320–325

580 ■I N D E X

data (continued)

persistent, querying

criteria queries, 257–261

dynamic finders, 255–256

HQL and SQL, 261–262

overview of, 254

pagination, 262–263

query by example, 261

populating, providing form for, 84

validating incoming, 78–79

data binding

associations and, 81–82

bindData method, 80–81

Errors API and, 79–80

file uploads and, 88–89

in flows, testing, 246–247

gTunes, 218–222

to multiple domain objects, 80

overview of, 77–78

validating incoming data, 78–79

data sources, configuring

DataSource.groovy file, 35–37

JNDI, 39

MySQL database, 37–39

overview of, 34

Data Transfer Object (DTO) pattern, 198

database identity generator, changing,
529–531

database mapping, customizing, 51–53

database schemas, Hibernate and, 519

databases

ACID properties of, 295

in-memory, 24

mapping objects to, 45

MySQL, configuring, 37–39

persisting fields to, 45–46

populating, with BootStrap classes,
364–365

supported, 39–41

dataSource bean, overriding, 493

data-source definition, dialect property of, 41

DataSource.groovy file

cache configuration, 283

dialect setting, 264

externalized configuration, 310

hibernate block, 265

hibernate.cache.use_query_cache setting,
284

hibernate.flush.mode setting, 271

logSql setting, 264

overview of, 35–37

specifying annotation configuration
strategy, 540

datePicker tag, 122–123

dbCreate setting (development
environment), 37

DBMigrate plugin, 321

debug levels, 307

debugging remotely, with IDE, 344–345

declarative syntax and HTTP method
restrictions, 85–86

declaring classes, 548

default action for controller, setting, 66–67

default URL mapping, 143–144

default view, finding, 76

default visibility, 548

defaultCodec page directive, 411

DefaultMessageListenerContainer class, 504

defining

command objects, 82–83

controllers

default action, setting, 66–67

overview of, 65–66

flow action and view states, 202–203

flow end state, 201–202

flow start state, 200–201

flows, 200

jmsTemplate bean, 502

music namespace, 190

namespace for tag libraries, 138

581■I N D E X

Find it faster at http://superindex.apress.com

parameterized message, 164

services, 293–294

Spring beans, 491–492

subflow state, 207

user messages in properties file, 159–161

delete action (AlbumController), 29

delete() method, 252

delete operation, 26

DELETE request, REST and, 472

deleteJob method, 356

Denial of Service (DoS) attack

securing against, 407–409

vulnerability to, 412

dependencies, services and, 289

dependency injection

autowiring and, 291, 489–490

implementing, 289

integration tests and, 298

overview of, 379

dependency resolution with Ivy, 327–330

dependsOn property, 372–373, 394

deploying

application, 41–42

to container, 361–362

customizing WAR file, 363

with Grails, 361

populating database with BootStrap
classes, 364–365

versioning and metadata, 362–363

deployment to Tomcat, automating, 317–320

detached objects in GORM

merging changes, 277–278

persistence life cycle, 274–275

reattaching, 276–277

development environment

dbCreate setting, 37

overview of, 33–34

dialect, configuring in GORM, 264–265

dialect setting (DataSource.groovy file), 264

disabling

See also enabling

auto time stamping, 288

“Buy” button, 439

discovering plugins, commands for, 367–369

display action (AlbumController), 181, 213

displaying

album art, 182–193

error message from command object, 234

invoice, 240

progress indicator, 178

displayInvoice.gsp end state view, 240

distributing plugins, 389–390

documenting Gant scripts, 315–316

domain classes

Address, 210–211

Album, 23, 209

AlbumPayment, 210

building relationships between, 53–56

with constraints, 166

constraints property, 46, 150

creating, 17–19

custom validators, using, 49

defining bidirectional one-to-many
relationship, 24

defining one-to-many relationship
between, 24

embedding objects, 59–60

errors property, 48

extending with inheritance, 56–58

generating scaffolding for, 130–131

interrelationships and, 23

Payment, 209

Permission, 436–437

persisting to database, 45, 46

Post, 398

Role, 429–430

saving, 267

Song, 18–19, 444

testing, 60–63

582 ■I N D E X

domain classes (continued)

transient properties of, 50–51

User, 95–96, 430, 535

validating, 46–49

domain model

See also domain classes

customizing database mapping, 51–53

object-oriented (OO) applications and, 45

domain objects

data binding to multiple, 80

embedding 59–60

mapping to relational databases, 45

updating with request parameters, 78

DOMBuilder (Groovy), 568

DoS (Denial of Service) attack

securing against, 407–409

vulnerability to, 412

dot deference operator, 305

doWithSpring hook

providing albumArtCache with, 393

Spring beans, 379–380

doWithWebDescriptor hook, 388–389

driver JAR file, adding to lib directory, 37

DTO (Data Transfer Object) pattern, 198

duck typing, 563

dynamic finders (GORM), 255–256

dynamic languages, and testing, 60

dynamic scaffolding, controllers and, 19–21.
See also CRUD (Create, Read,
Update, Delete) applications

dynamic Spring beans, 382–383

dynamic tags. See tags, dynamic

dynamic transitions, gTunes application,
235–236

dynamically creating beans, 497–498

■E
each tag (GSP), 113–114

eachError tag, 124

eager associations, 279–281

Eclipse

importing Grails project into, 339–341

New Java Class dialog box, 536

overview of, 338–339

running Grails project from, 341

edit action (AlbumController), 29

edit.gsp view, 33

effects, adding with Ajax, 193

Ehcache caching solution, 187

EJB 3-compliant mapping, 535–541

Elvis operator (?:), 165

e-mail confirmation, sending, 348

e-mail notifications, asynchronous, 511–513

email property, 347

e-mail servers, integration with, 345–349

embedded GStrings (GSP), 110–111

embedding

objects, 59–60

parameters in URL mapping, 145–147

employee table, table-per-subclass mapping,
57

enabling

See also disabling

artist subscriptions, 505–510

dynamic scaffolding, 20

remote access to services, 300

search, 195

encodeAsHTML() method, 411–414

encodeAsURL() method, 412

encoding data in GSP views to HTML, 411

end states (flows), 201–202

enterCardDetails view state, 231–235

enterShipping state, 218–222

environments

DataSource.groovy file and, 35–36

overview of, 33–34

production, 37–39

environment-specific configuration, 306

equals, implementing, 276–277

583■I N D E X

Find it faster at http://superindex.apress.com

error codes, specifying custom, 49

error handling with tags

eachError tag, 124

hasErrors tag, 124

overview of, 123

error messages, displaying from command
object, 234

error.gsp page, 153–154

Errors API, 79–80

errors property (domain classes), 48

event handling, in Ajax, 178–179

events

GORM, 287–288

plugins and, 385–387

triggering

from action state, 203

from view state, 205–206

with return value, 203

exception types, org.jsecurity.authc package,
423

exceptions, logging, 68

executeQuery method, 262

executing

code before and after calls, 177–78

Grails under different environments, 34

execution, halting with before interceptor, 91

Expando object (Groovy), 555

ExpandoMetaClass, 186, 563

exporting data to XML, 320–325

export-library-to-xml script

full code for, 323–324

output XML, 325

running, 324

exposing services, 298–304

<extend-classpath> element, 326

extending domain classes with inheritance,
56–58

External Tools dialog box (Eclipse), 341

externalized configuration, 310

■F
FactoryBean interface, 493–495

factoryMethod property, bean argument, 494

fckeditor plugin, 402–404

Feeds plugin, 473–476

fields, creating with tags

checkBox and radio tags, 120–121

datePicker tag, 122–123

form tag, 119–120

select tag, 121–122

textField tag, 120

file appender

configuring, 308

using, 309

file extensions, content negotiation with, 458

file property (Song domain class), 444

file uploads

data binding and, 88–89

MultipartHttpServletRequest interface
and, 87–88

overview of, 86

filtering and iteration, tags for

collect tag, 114–115

findAll tag, 115–116

filters

implementing with JSecurity plugin,
427–429

overview of, 417–418

findAll tag (GSP), 115–116

findAllBy* method, 256

findBy* method, 255–256

Firefox

Poster plugin

ACCEPT header, specifying, 468

installing, 467

main window, 467

response window, 468

tray icon, 467

RSS feeds, 476

584 ■I N D E X

first-level cache, 282

500 response code, mapping for, 153

flash scope

description of, 70–72

flows and, 204

flow id, 200

flow scope (flows), 204

flow.albumPayments.album expression
(GPath), 216

flows

action and view states, 202–203

defining, 200

end state, defining, 201–202

gTunes

credit card details, entering, 231–235

data binding and validation, 218–222

dynamic transitions, 235–236

prices for albums, providing, 209

purchase, 208

querying about CD purchase, 216–218

recommendations, generating, 222–227

recommendations, showing, 227–231

validating login, 212–216

verifying flow state with assertions,
236–244

java.io.Serializable interface and, 204–205

scopes, 204

start state, defining, 200–201

subflows and conversation scope, 206–208

testing, 244–247

transition actions and form validation, 206

view state, triggering events from, 205–206

flush() method, 266

flushing sessions

automatically, 270–272

manually, 267–268

for loop (Groovy), 557

form fields, enabling Ajax on, 193–197

form tag, 119–120

form validation, flows and, 206

format request parameter, using for content
negotiation, 459

forms, creating with tags

checkBox and radio tags, 120–121

datePicker tag, 122–123

form tag, 119–120

select tag, 121–122

textField tag, 120

404 response codes, custom mapping for,
154

Fowler, Martin, 545

■G
g namespace, 138

Gant, 6

Gant build system

bootstrapping Grails from command line,
317

command-line variables, 313–314

documenting scripts, 315–316

overview of, 310–311

parsing command-line arguments,
314–315

reusing Grails scripts, 316

scripts, creating, 312–313

gant command, 311

Gant scripts

automating deployment to Tomcat,
317–320

creating, 312–313

documenting, 315–316

exporting data to XML, 320–325

<g:applyLayout> tag, 215

<g:createLink> tag, 475

generate-controller command, 27

generating

controller to implement CRUD
functionality, 27–31

views for actions to delegate to, 32–33

genre action (StoreController), 128

genre recommendations, querying for, 223

585■I N D E X

Find it faster at http://superindex.apress.com

genre.gsp page, 127

get method, 28, 249–250

getFlow() method, 244

getMessage method, 168

getPrincipal() method, 420

<g:formRemote> tag, 175–176

<g:link> tag, 154

<g:message> tag, 263

GORM

associations

overview of, 252–253

querying with criteria, 260

relationship management methods,
253–254

transitive persistence, 254

configuring

custom dialect, 264–265

Hibernate properties, 265

overview of, 263

SQL logging, 264

detached objects

merging changes, 277–278

persistence life cycle, 274–275

reattaching, 276–277

events, 287–288

Hibernate library and, 18

listing, sorting, and counting, 250–251

locking strategies, 285–287

mapping

for bidirectional one-to-many
association, 522

for unidirectional one-to-many
association, 521

overview of, 249

performance tuning

associations, 278–281

batch fetching, 281–282

caching, 282–284

inheritance strategies, 285

overview of, 278

querying from

criteria queries, 257–261

dynamic finders, 255–256

HQL and SQL, 261–262

overview of, 254

pagination, 262–263

query by example, 261

reading objects, 249–250

saving, updating, and deleting, 251–252

semantics of

automatic session flushing, 270–272

clearing session, 269–270

Hibernate Session class, 266–267

obtaining session, 268–269

overview of, 265–266

session management and flushing,
267–268

transactions in, 272–274

<g:paginate> tag, 263

GPath expression

flow.albumPayments.album, 216

interating with, 115

Grails

as platform, 3

command-line interface, 6

concepts embraced by, 1

description of, 3

goal of, 1

Groovy language and, 4–5

installing, 5–6

simplicity and power of, 2

welcome page, 13

grails command, 34, 311

grails console command, 455

Grails context menu (TextMate), 343

grails create-service command, 183

grails create-taglib target, 137

Grails stack, 2

grails war command, 362

586 ■I N D E X

grails-app/conf/UrlMappings.groovy, 143

grails-app/controllers directory, 65

grails-app/domain directory, 18

grails-app/i18n/ directory, 159

grails-app/i18n/messages_es.properties file,
162

grails-app/i18n/messages.properties file. See
properties file

grails-app/services/com/g2one/gtunes/Stor
eService.groovy, 290

grails-app/taglib directory, 116

grails-app/view/car/list.gsp, 130–131

grails-app/views/error.gsp page, 153–154

grails-app/views/person/create.gsp, 166

grails-app/views/store/genre.gsp page, 127

grails-app/views/store/shop.gsp page, 134

GrailsApplication class, 375–376

grails.converters package, 454

grails-debug executable, 344

grailsEnv variable, 313

GrailsTestUnitCase class, 61

GrailsUrlMappingsTestCase class, 155–158

grails.war.resources setting, 363

<g:remoteField> tag, 193–194, 197

<g:remoteLink> tag, 173–174, 179, 193

Groovy. See also Groovy language

GPath and, 216

Meta Object Protocol, 384

mixing with Spring, 513–516

return statements, 75

spread dot (*.) operator, 385

spread operator (*), 259

as strongly typed language, 78

XmlSlurper parser, 388

Groovy injection, 409

Groovy language

builders, code synthesis, 567–569

Java compared to

differences, 546–547

similarities, 545–546

metaprogramming

adding behavior at runtime, 563–565

code synthesis, 566–567

intercepting method dispatch, 565

MetaClass, 562–563

overview of, 561–562

overview of, 4–5, 545

syntax

assertions, 548–549

classes, declaring, 548

closures, 552–553

Expando object, 555

lists and maps, 553–555

overview of, 547–548

ranges, 556–557

strings, 549–552

testing and, 60

true object orientation

methods on primitives, 558–559

operator overloading, 559–560

overview of, 557–558

truth, 560–561

Groovy Server Pages. See GSP

“Groovy Truth”, 216

groovy.lang.Script class, 548

GroovyPagesTestCase, 191

GroovyShell class, 409

GroovyTestCase API, extensions to, 245

Groovy-WS project, 483–484

GSP (Groovy Server Pages)

attributes, 108

basics of, 107–108

built-in tags

filtering and iteration, 114–116

iterative, 113–114

logical, 112–113

setting variables with, 111–112

custom tags

basics of, 138–139

587■I N D E X

Find it faster at http://superindex.apress.com

creating, 136–137

tag library, creating, 137–138

testing, 139–141

dynamic tags

forms and fields, creating, 119–123

linking, 117–119

overview of, 116–117

paginating views, 125–131

rendering templates, 132–136

validation and error handing, 123–124

embedded GStrings, 110–111

JSP custom tag libraries and, 111

overview of, 107

page directives, 109

scriptlets, 109–110

GSP code, extracting into templates, 214

GSP views, encoding data in, to HTML, 411

gTunes application

Address class

applying constraints to, 542

code for, 537–540

column annotation, 538

creating, 536–537

entities fields, 537

id property, 538

overview of, 536

version property, 538

Ajax-powered features for, 173

album art, displaying, 182–193

Album domain class, 23

AlbumController, 24

albumList template, rendering, 132

artist subscriptions, enabling, 505–510

assertions, verifying flow state with,
236–244

AuthRealm class, 422–423

content panel, 180

controller

creating, 8–10

overview of, 5

running application, 13

running tests, 12–13

credit card details, entering, 231–235

data binding and validation, 218–222

dynamic transitions, 235–236

flows

credit card details, entering, 231–235

data binding and validation, 218–222

dynamic transitions, 235–236

prices for albums, providing, 209

purchase, 208

querying about CD purchase, 216–218

recommendations, generating, 222–227

recommendations, showing, 227–231

validating login, 212–216

verifying flow state with assertions,
236–244

GSP templates for top five lists, 133

home page

creating, 94–95

in English, 161

in Spanish, 163

with login form, 97

instance search box, 194

jobs and, 356–361

login form, adding, 96–97

LoginCommand class, 102–104

MonetaryAmount class, 526

MonetaryAmountUserType, 526–528

MUSICIAN_TO_RECORD join table, 524

 “My Music” section, implementing,
433–446

paginating views in, 125–126

plugins

album art service and tag library,
391–397

blog, 397, 406

prices for albums, providing, 209

purchase flow, 208

588 ■I N D E X

gTunes application (continued)

querying about CD purchase, 216–218

QuickTime and, 440–446

recommendations

generating, 222–227

showing, 227–231

registration code, testing, 100–102

Registration screen, 98

registration, implementing, 97–100

resources.groovy script, 490

shop.gsp templates, rendering, 134

Song domain class, 18–19

SongController

creating, 7, 19

enabling dynamic scaffolding, 20

Song.groovy file, 18

StoreController

creating, 9

genre action, 128

index action, 10

printing message with, 13

services and, 291–293

shop action, 135

StoreControllerTests suite, 10–11

StoreService

creating, 290

purchaseAlbums method, 293–294

storeService property, 294–295

structure of, 7

Subscribe link, 509

tag library, creating for, 137

testing login process, 104–106

User domain class, 95–96

validating login, 212–216

WAR file, 42

XSS vulnerability in, 410–411

GtunesService, exposing, 299

<g:uploadForm> tag, 87

■H
halting execution with before interceptor, 91

handling validation errors, 79

handling events

Ajax, 178–179

hasErrors() method, 79

hasErrors tag, 117, 124

hashCode, implementing, 276–277

hashing password with SHA1, 426

hasMany property, 54–56

hasProperty method, 562

hasRole method, 430

HelloWorld.groovy script, 312–313

help command, 6, 315

Hibernate

databases supported by, 39–41

description of, 2, 254

directory structure, 533

features of, 519

mapping with

constraints, using with POJO entities,
541–542

EJB 3-compliant, 535–541

overview of, 532–535

Session class, 266–267

types, 524–529

hibernate block (DataSource.groovy file),
265

Hibernate Criteria API, 257

Hibernate library, 18

Hibernate properties, configuring in GORM,
265

Hibernate Query Language (HQL), 261–262

Hibernate Session, detached objects and, 274

hibernate.cache.use_query_cache setting
(DataSource.groovy file), 284

hibernate.cfg.xml file, 532–533, 541

hibernate.flush.Mode setting
(DataSource.groovy file), 271

589■I N D E X

Find it faster at http://superindex.apress.com

hilo generator

configuring, 530

description of, 529

home page

creating, 94–95

in English, 161

in Spanish, 163

with login form, 97

hooks

doWithSpring, 379–380, 393

doWithWebDescriptor, 388–389

plugin descriptors and, 374–375

HQL (Hibernate Query Language), 261–262

HQL injection, 407–409

HSQLDB, 2

HTML anchor tag, creating, 173–174

HTML escaping, 411

HTTP method restrictions, 85–86

HTTP request codes, URL mapping to,
153–154

HTTP request methods, URL mapping to,
151–153

HttpServletResponse object, 89

Hudson

“Build With Grails” build step, 334

configuring Grails installation in, 332

continuous integration with, 331–335

Dashboard, 331

free-style job, creating, 333

Grails build, configuring, 334

■I
id column, 46

IDE (integrated development environment)

adding support to, 335–336

Eclipse

importing Grails project into, 339–341

overview of, 338–339

running Grails project from, 341

IntelliJ, 336

NetBeans, 337–338

remote debugging with, 344–345

TextMate, 342–344

imperative approach to HTTP method
restrictions, 85

import directive, 109

importing Grails project into Eclipse,
339–341

index action

AlbumController, 28

default, of controllers, 10

inheritance

extending domain classes with, 56–58

in GORM, 285

injecting jmsTemplate bean into class, 502

injecting services. See dependency injection

in-memory database, 24

inner beans, 495

inputStream property (request object), 89

installing

Grails, 5–6

Java Management Extensions (JMX)
plugin, 299

plugins, commands for, 369–370

install-plugin command, 369

install-plugin global command, 369

integrated development environment. See
IDE

integration

See also Ant (Apache), integration with

with e-mail servers, 345–349

integration tests, 11, 61

IntelliJ (JetBrains), 336, 345

Intercept, Cache, Invoke pattern, 566–567

intercepting calls to methods, 90–91

intercepting method dispatch, 565

internationalization

See also localizing messages;
parameterized messages

590 ■I N D E X

internationalization (continued)

messageSource interface and, 168–170

URL mappings for, 163

validation messages and, 21

Inversion of Control (IoC) design pattern, 2,
289

invoice, displaying, 240

invokeMethod method, overriding, 565

IoC (Inversion of Control), 2, 289

isAttached() method, 276

isPermitted method, 438

iterative tags, 113–116

Ivy (Apache), 327–330

ivy.xml file, 328

ivyconf.xml file, 328

■J
JAR dependencies, 328

Java

builder pattern, 567

Groovy and, 4–5, 545–547

mixing with Spring, 513–516

Java Cryptography Extension, 414

Java Management Extensions (JMX) plugin,
299–304

Java Monitoring and Management Console
(JConsole), 300–302

Java Persistence API (JPA), 535

Java SDK 1.4, 5

Java servlets, request attributes, 69

java.io.Serializable interface, 204–205

java.lang.Comparable interface, 556

java.text.MessageFormat class, 164–165

java.util.ResourceBundle class, 161

JAVA_OPTS environment variable, 300

JavaScript, calling REST web services from,
457–458

JavaScript Object Notation (JSON)

marshaling objects to, 463–466

unmarshaling objects, 466–472

JConsole (Java Monitoring and Management
Console), 300–302

JDBC

defining data sources and, 35

metadata, 41

JetBrains IntelliJ

overview of, 336

remote debug configuration, 345

JetGroovy plugin, 336

Jetty, 2

JMS API, Spring support for, 498. See also
ActiveMQ

JMS messages

consuming with Spring, 503–505

sending with Spring, 502–503

JMX (Java Management Extensions) plugin,
299–304

JNDI data source, configuring, 39

job template, 350

jobs

adding and removing, 355–356

gTunes and, 356–361

pausing and resuming, 355

scheduling

cron, 351–353

Quartz plugin, installing, 349–350

scheduler, using, 354

simple, 350–351

triggers and, 354–355

triggering, 355

JodaTime API, 525

joinTable mapping, 522

JPA (Java Persistence API), 535

<jsec:hasAllRoles> tag, 432

<jsec:hasPermission> tag, 439

<jsec:hasRole> tag, 432

<jsec:isLoggedIn> tag, 431

<jsec:isNotLoggedIn> tag, 431

<jsec:lacksPermission> tag, 439

<jsec:principal /> tag, 432

591■I N D E X

Find it faster at http://superindex.apress.com

JSecurity plugin

authentication realms, 419–420

authentication, implementing with,
422–427

description of, 416, 419

filters, 427–429

permission-based security,
implementing, 433–446

role-based security, implementing, 429–430

roles and permissions, 421

subjects and principals, 420

view, securing, 431–432

working with, 421

JSON (JavaScript Object Notation)

marshaling objects to, 463–466

unmarshaling objects, 466–472

JSP

c:out tag, 110

custom tag libraries, 111

GSP compared to, 107

popularity of, 107

JUnit test reports, 61

■K
keyword, assert, 548

Koenig, Dierk, 560

■L
language-level assertions, 548–549

lazy associations, 278–281

LazyInitializationException, 268

leaky abstractions, 266

legacy mapping with ORM DSL

association mapping, changing, 521–524

composite identifiers, 531–532

database identity generator, changing,
529–531

Hibernate types, 524–529

overview of, 519

table and column name mapping,
changing, 520–521

legacy table containing person data, 52

lib directory, adding driver JAR file to, 37

libraryLayout.gsp view, 434–435

link discovery, Atom and RSS, 476–477

link tag, 117–118, 154–155

linking tags

createLink and createLinkTo, 118–119

link, 117–118, 154–155

overview of, 117

LiquiBase plugin, 321

list action, 28, 412

List associations, 253

list() method, 250–251

list.gsp view

for blog plugin, 399–401

description of, 33

listings

abstract beans, using, 495

ACCEPT header, configuring additional
MIME types, 453

ActiveMQ, starting, 499

Address class

applying constraints to, 542

defining, 210–211

Address.java class, 537

AddressConstraints.groovy script, 542

after interceptor, 91

afterView filter, 418

Ajax login request, handling, 176

Album class

creating, 23

price property, 209

album-art plugin example

adding method to all controllers,
395–396

getArt() method and, 396

mocking cacheService, 395

providing metadata to, 393

updating to use simple-cache plugin,
394

592 ■I N D E X

listings (continued)

AlbumArtKey cache key class, 188

AlbumArtService template

creating, 183

enabling caching, 188

full code for, 188–190

AlbumController

creating, 24

display action, 181, 213

_album.gsp template

adding album art to, 192

buy action, 211

implementing, 180

_albumList.gsp template, 181

AlbumPayment domain class, 210

AlbumPermission class, 437

AlbumService class, 480

all format

content negotiation with ACCEPT
header and, 456

marshaling objects to JSON, 463

allowedMethods property, 85

ApplicationContextAware instance, 489

ArtefactHandler interface

for Quartz plugin, 377

testing, 378

Artist show.gsp view, 455

_artist.gsp template, updating, 509

ArtistSubscription class, 506

artistSubscription view, 513

assertions (Groovy), 549

assigned generator, configuring, 531

association, many-to-one, 81

authenticate method, 424–425

AuthFilters class, 427

AuthRealm class

authenticate method, 422

isPermitted method, 438

username property, 423

auto time stamping, disabling, 288

automatic session flushing, implications
of, 270–271

batchSize, configuring, 281

beans

configuring using Config.groovy, 184

defining, 491

beans property, 490

before attribute, using, 178

before interceptor

defining, 90

halting execution with, 91

belongsTo property, 54

bindData method, 81

binding XML data to new instances, 472

blog plugin

adding metadata to, 397

fckeditor plugin and, 402

list.gsp view, 399–400

Post domain class, 398

PostController, 399

_post.gsp template, 401

URL mapping, 401

Blowfish encryption codec class, 414–415

BootStrap class, 364

build.xml file, running test target in, 325

buyFlow, 240–244

cache policy, specifying, 283

cache provider, specifying, 283

<cache:text> tag, 382

caching

content-level, 382

return value of blocks of code using
closures, 381

caching pattern, 380

car table, 59–60

checkBox tag, 120

checking whether user is subscribed, 507

chooseGiftWrapFlow flow, 206–207

593■I N D E X

Find it faster at http://superindex.apress.com

ClassPathXmlApplicationContext
instance, 489

clearing sessions, 269

codec class example, 414

collecting values with <g:collect> tag, 114

column name for many-to-one
association, changing, 521

column name mapping, changing, 520

command objects

defining, 82

using, 83

for validation, 84

command-line arguments, handling, 315

Company class, transient property, 50

company table, 50

composite identifier, configuring, 531

composition relationship, 59

Config.groovy

environments block, 306

grouping settings in, 305

confirmRegistration view, 349

ConnectionFactory pool, 502

constraining maximum value for
pagination, 412

content negotiation, using file extensions
for, 458

content panel, 180

contentType directive, 109

controller

creating, 8

dynamically mapping to, 451

controller action vulnerable to attack

correcting, 413

injecting service instance into, 291

as model, 75

ControllerUnitTestCase class, 92

create action, 31

create-app gTunes command, 7

createLink tag, 118

create-plugin command, 370

create-service target, 290

CreditCardCommand class, 233

CreditCardCommand object, 233

criteria query, 257

cron job, 352

custom view, rendering, 76

data binding, validation errors and, 79

DataSource, specifying annotation
configuration strategy, 540

DataSource.groovy file, 36

datePicker tag, 123

debug level, setting, 307

deep converter results, using, 461

default Log4j configuration, 306

default validation messages, 167

DefaultMessageListenerContainer
instance, configuring, 504

delete action, 29

dependency injection, using to obtain
Hibernate session, 269

dependsOn property, 394

deploying to Tomcat, 319

displayInvoice.gsp end state view, 240

domain classes

with constraints, 166

defining bidirectional one-to-many
relationship, 24

defining one-to-many relationship
between, 24

doWithSpring hook, 380, 393

doWithWebDescriptor hook, adding
Servlet filter with, 388

dynamic finders, 255

dynamic querying with criteria, 258

dynamic transitions, using to specify
transition target state, 235

dynamically configuring beans, 497

dynamically creating beans, 498

eager associations, 279–280

edit action, 29

Ehcache Spring bean, configuring, 187

594 ■I N D E X

listings (continued)

e-mail confirmation, sending, 348

embedding object, 60

enabling search, 195–196

encodeAsHTML() method, 411

engine table, 59

enterCardDetails view state

defining, 231–232

displaying error messages, 234

enterShipping state, 218

enterShipping.gsp view, 219–220

environment-specific data-source
configuration, 36

equals and hashCode, implementing, 276

export-library-to-xml script

full code for, 323–324

output XML, 325

running, 324

<extend-classpath> element, 326

externalized configuration, 310

externalizing DataSource configuration,
310

FactoryBean interface, 493

factoryMethod property, 494

fckeditor, enabling Rich Text Editing with,
402–403

Feeds plugin, rendering rSS and Atom
feeds with, 473–474

file appender

configuring, 308

using, 309

file uploads in action, 88

flash scope, storing message in, 72

flows

action state, checking login details with,
212–213

action state, defining, 202

action state, triggering events from, 203

defining, 200

end state, defining, 201

redirect action, using to exit, 213

return value, triggering events with, 203

start state, defining, 200

subflow state, defining, 207

view state, defining, 202

flushing session, 267

form tag

from
grails-app/views/user/register.gsp,
119

with url attribute, 120

Gant build script, 310

generate-controller command, 27

genre action of StoreController, 128

genre.gsp page, 127

get method, 249

getFlow() method, 244

GORM events, using, 288

GPath expression, interacting with, 115

Grails executable, running, 6

grails-app/services/com/g2one/gtunes/S
toreService.groovy, 290

grails-app/view/car/list.gsp, 130–131

grails-app/views/error.gsp page, 153–154

grails-app/views/person/create.gsp, 166

GrailsApplication object, using to inspect
jobs, 379

GrailsClass interface, 375

grails.war.resources setting, 363

<g:remoteField> tag, 194

<g:remoteLink> tag, 173

Groovy

calling methods on integers, 558

enhancing behavior of class, 564

Expando object, 555

ExpandoMetaClass, 563

for loop and ranges, 557

GStrings, 549

implementing Intercept, Cache, Invoke
pattern, 566–567

595■I N D E X

Find it faster at http://superindex.apress.com

invokeMethod, overriding, 565

lists and maps, 553–554

MarkupBuilder, 568

MetaClass, 562

per-instance metaprogramming, 564

ranges, 556

respondsTo and has Property methods,
562

save method, adding at runtime, 564

step method, 552

string and characters, 550

switch statement, 560–561

Groovy injection, 409

GSP template

rendering, 132

shop.gsp, rendering, 134

for top five lists, 133

gTunes home page, 94

handling exceptions from Amazon, 186

hasErrors and eachError tags, 117, 124

hashing password with SHA1, 426

hasRole method, 430

HelloWorld.groovy script template, 312

help command, 6, 315

Hibernate dialect, customizing, 264

Hibernate regular configuration, 265

Hibernate type

changing, 524

custom UserType, 528

custom UserType, using sqlType with,
529

JodaTime Hibernate UserType, 525

MonetaryAmount class, 526

MonetaryAmountUserType, 526–528

sqlType argument, 525

hibernate.cfg.xml file

adding mapping resources to, 533

updated, 541

hiding album, 193

hilo generator, configuring, 530

HQL

via executeQuery, 262

with findAll method, 261

with named parameters, 262

with positional parameters, 262

HQL injection, 408

HTTP request method, 85, 152

import directive, 109

index action, 28

inner beans, using, 495

install-plugin command, 369

install-plugin global command, 369

interception conditions, using, 90

invoking GSP tag as method call, 116

iterating

with <g:each> tag, 113

with <g:while> tag, 114

Ivy, example output from, 329

ivy.xml file, 328

Java executable, running, 5

JAVA_OPTS, 300

java.util.ResourceBundle class, 161

JMS ConnectionFactory, configuring for
ActiveMQ, 501

JMS message, sending, 503

jmsContainer instance, starting, 504

jmsTemplate bean, 502

JMX plugin

exposing service using, 299

using with XFire plugin, 303

JNDI data-source configuration, 39

job naming and grouping, 351

job template, 350

joinTable mapping, 522

<jsec:hasPermission> tag, 439

JSecurity plugin, installing, 419

JSON builder, 465

JSON response, 464

596 ■I N D E X

listings (continued)

JSP

c:out tag, 110

unattractive tag example, 116

lazy associations, 278

legacy table containing person data, 52

libraryLayout.gsp view, 434–435

link vulnerable to XSS attack, 411

linking with <g:link> tag, 117

list action, 28, 412

List associations, 253

list() method, 250

listOrderBy* methods, 251

list-plugins command, 367–369

loadRecommendations state

checking for results in, 226

defining, 223

full code for, 226–227

local plugins, installing, 370

LocalSessionFactoryBean with
BeanBuilder, 493

locating elements with <g:findAll> tag, 115

log property, using, 68

logging

exceptions, 68

unfiltered traces, 309

LoggingFilters class, 417

logical blocks, 112

login action of UserController, 104

login form

adding everywhere, 96

altering to use <g:formRemote> tag, 176

using tag to display, 175

login template, 175

LoginCommand class, 102, 425–426

Mail plugin, configuring, 346

many-to-many association, mappings for,
523

mapping closure, 519

mapping onto actions based on HTTP
method, 450

marshaling XML with deep converter,
460–461

merge method, 277

message tag, 161

MessageListenerAdapter, delegating to
Grails service using, 504

messageSource interface

getMessage method, 168

locale, specifying, 169–170

using in controller, 169

metadata, using, 362

methods

adding to class, 384

adding to controllers, 384

of Realm class, 419

mockDomain method, 92

mocking methods with
ExpandoMetaClass, 186

model, creating, 108

modeling subscription, 356

multiline strings, using to provide help,
316

multiple reads return same object, 266

music action

defining, 433

securing, 435

music namespace, defining, 190

<music:albumArt> tag, 191

music.gsp view, 433–434

MySQL data-source configuration, 39

newest 10 albums from last week,
obtaining, 358

newsletter.gsp view, 360–361

NewsLetterJob, full code for, 359–360

object equality, 276

onChange event, 386

one-to-many association

bidirectional, 523

597■I N D E X

Find it faster at http://superindex.apress.com

overview of, 54

owning side of, 56

with type, 55

one-to-one relationship, 53

onNewAlbum method, 505

onNewAlbum(Album) method, 511–512

onNotAuthenticated() method, 428

OptimisticLockingFailureException,
handling, 285

ordering items using paginate tag, 131

org.apache.commons.logging.Log API, 67

org.jsecurity.authz.Permission interface,
421

org.jsecurity.mgt.SecurityManager
interface, 425

org.springframework.web.multipart.Multi
partFile interface, 87

org.springframework.web.multipart.Multi
partHttpServletRequest interface, 86

overriding dataSource bean, 493

pagination support in CarController, 131

parameterized message

defining, 164

populating dynamically with message
tag, 165

populating with Groovy, 165

populating with Java, 164

populating with message tag, 165

params attribute with <g:link> tag, 118

params property, 73

parsing JSON on client, 464

Payment domain class, 209

per-environment bootstrapping, 364

Permission domain class, 436

Person class

custom table mapping for, 53

database mapping and, 51

extending, 56

mapping property, 52

person, employee, and player tables

database mapping, 51

table-per-subclass mapping, 57

pessimistic locking

with lock instance method, 287

with lock method, 286

picture property, 88

play.gsp view, 443–444

plugin descriptor, 371

plugin hooks, 374–375

plugin-descriptor with metadata
provided, 372

plugin-info command, 368–369

plugins

configuring additional repositories, 391

installing over HTTP, 370

packaging, 389

populating

class, 77

data, form for, 84

data on application load, 364

printing message using render method, 10

private fields, using to hold action code,
228

production data-source configuration, 38

progress indicator, displaying, 178

property file, 160

Prototype library, using, 173

Quartz plugin

example job, 379

installing, 349

querying

by example, 261

for genre recommendations, 223

for user recommendations, 225

with criteria, 260

with projections, 261

radio tag, 121

_recommendations.gsp template, 230

598 ■I N D E X

listings (continued)

redirect, 74

register action

adding, 97

implementing, 98–99

updating, 357

updating to include roles, 430

register view, creating, 98

register.gsp file

adding check box to, 357

email property, 347

registering triggers, 354

registration link, adding, 96

regular expressions

Groovy, 551

Groovy vs. Java, 550

relationship management methods, 253

rendering

property values from GSP, 162

simple String, 73

request object, 89

request parameters, updating existing
object with, 78

request-scoped service, 297

requireHardCopy view state, 217

REST API, communicating with

with ACCEPT header, 455

with CONTENT_TYPE header, 457

REST service

calling from JavaScript, 457

error response from, 472

handling POST requests in, 470

updating XML to send to, 468

RESTful controller, manually
implementing, 450

RESTful URL, 451

returning map of data to be rendered by
view, 75

reusing closure code in events, 228–229

Role domain class, 429

roles, restricting access based on, 432

rolling back transaction
programmatically, 273

routing users to root of application to
StoreController, 94

RSS and Atom metadata, providing, 477

run-app command, 13

SampleController class, 65–66

save action, 31

save() method, 251

savepoints, using, 274

saving domain class, 267

scheduler, getting jobs from, 354

scriptlets in action, 110

_searchResults.gsp template, 196–197

second-level cache, 282

securing

action, 428

/admin URI, 447

view, 431

security filter, 418

SecurityUtils class, 420

select tag, 121–122

sending

e-mails with mailService, 359

simple mail message, 346

servletContext scope, synchronized access
to, 70

setCurrentState(String) method, 246

shop action of StoreController, 135

show action, 28

showConfirmation.gsp view, 236–237

show.gsp file, reusing storeLayout.gsp file
in, 215

showRecommendations.gsp view,
229–230

showRecommendations view state, 227

showTime action, 173

SOAP web service, calling, 484

599■I N D E X

Find it faster at http://superindex.apress.com

Song class

constraints property, 46

file property, 444

title and duration properties of, 62

Song domain class, 18–19

Song table, 45

SongController class

creating, 19

enabling dynamic scaffolding, 20

play action, 442

stream action, 513

SortedSet associations, 252

Spring XML format, 487–488

Spring beans, dynamically creating at
runtime, 382

Spring Errors interface, methods in, 48

standard servlet API, 73

step method, paginating records with, 322

StoreController

buyFlow, 212

default index action, 10

web flow logic in, 292–293

StoreControllerTests suite, 10

storeLayout.gsp file, 214

StoreService

calling purchaseAlbums method,
294–295

purchaseAlbums method, 293–294

stream action, 444–446

StreamingMarkupBuilder class, 322

streamingService bean

creating, 515

using, 516

StreamingService class, 514–515

StreamingTagLib.groovy file, 441–442

subscribe action, 510

subscribe template, 506

subscribed e-mails, obtaining, 358

Subscriptions URL mappings, 510

SubscriptionTagLib class

implementing, 507

tags, implementing, 507

testing, 508–509

<sysprops> element

passing system properties with, 327

“Buy” button, disabling, 439

“My Music” link, adding, 433

table name, changing, 520

table-per-hierarchy mapping, 57

table-per-subclass mapping, 57

tag, 138–139

tag library

creating, 137

defining namespace for, 138

testing, 140

TagLibUnitTestCase class, 508

templates, extracting common GSP code
into, 214

test-app command, 12

TestApp.groovy script, 316

testing

contents of response, 92

data binding in flows, 246–247

if user is logged in, 244

render method, 93

service code, 480–481

StoreController index action, 11

successful registration, 102

testLoginPasswordInvalid test case, 105

testLoginSuccess test case, 105

testLoginUserNotFound test case, 104

testPasswordsDontMatch case, 100

testRegistrationFailed case, 101

textField tag, 120

Tomcat deployer, adding, 319

TomcatDeploy.groovy file, 320

TransactionStatus interface, 296–297

transition action, confirming purchase
using, 238–239

600 ■I N D E X

listings (continued)

uninstall-plugin command, 370

unit tests, 61–62

UnknownAccountException, 423

unsubscribe action, 510

update action, 30

updates gone wrong, 272

upload form example, 87

uploaded file, retrieving, 87

URL escaping, 412

URL mapping

accessing request parameter in
controller action, 146

applying constraints to parameters, 149

blog-type, 149

changing to exclude /services URI, 479

custom, 155

decoding request parameter to replace
underscores with spaces, 147

default, 143

double wildcards in, 151

embedding request parameter in, 146

forward and reverse, testing, 157

for 404 response codes, 154

including static text in, 144

link tag, 154

for localization, 163

mappings property, 157

reverse, 157

reverse, using link tag, 155

for /showArtist/ URL, 145, 154

specifying additional request
parameters in, 147

specifying controller and action as
properties of, 145

unit testing, 156

variables, testing, 156

to view, 148

wildcards in, 150

URL mapping scheme, 446–447

UrlMappings class, 155

user, assigningAlbumPermission to, 438

User class

constraining password property in, 49

email property, 347

updating with permissions association,
436

user credentials, validating, 424

User domain class, 95, 430, 535

User instance, making available in
request, 432

user messages in properties file, 162

UserController, login action, 176

User.hbm.xml file, 534–535

validating

Song object, 47

Song object, revisited, 48

validation, transition actions for, 206

version number, setting, 362

views, generating, 32

WebFlowTestCase, extending, 244

_welcomeMessage.gsp template, 177

withFormat method, 453–454, 459

withSession method, 269

withTransaction method, 273, 295

WSDL, 481–482

XML builder, 462–463

XML marshaling capabilities, automatic,
456

XML returned from GET request, 466

XMLHttpRequest ojbect, 171

listOrderBy* method, 251

list-plugins command, 367–369

lists (Groovy), 553–555

loadRecommendations state, 222–227

local plugins, 370, 390–391

localeSelect tag, 122

localizing messages

defining user messages, 159–161

retrieving message values, 161–163

601■I N D E X

Find it faster at http://superindex.apress.com

URL mapping for, 163

lock() method, 286–287

locking strategies in GORM, 285–287

log property, using, 68

Log4j library

appenders, 308

layout styles, 308

overview of, 306–307

logging

configuring, 306–309

controllers and, 67–68

method calls, 90

LoggingFilters class, 417

logic, encapsulating into service layer, 289

logical tags, 112–113

login action (UserController), 104, 176

login form, creating, 96–97

login process, testing, 104–106

login request, Ajax, handling, 176

login, validating with action state, 212–216

LoginCommand class, 102–104, 425–426

logSql setting (DataSource.groovy file), 264

■M
Mac SOAP Client project, 482

Mail plugin, 346

main window (JConsole), 300

many-to-many association, mapping,
523–524

many-to-one association, 81, 521

mapping

See also legacy mapping; URL mapping

with Hibernate XML

constraints, using with POJO entities,
541–542

EJB 3-compliant, 535–541

overview of, 532–535

objects to relational databases, 45

strategy for

choosing between, 58

table-per-hierarchy, 57

table-per-subclass, 57–58

mappings property
(GrailsUrlMappingsTestCase class),
157

maps

of data to be rendered by view, returning,
75

Groovy, 553–555

MarkupBuilder (Groovy), 568–569

marshaling objects

to JSON, 463–466

to XML, 460–463

Math.min method, 412

MBeans tab (JConsole), 302

McWhirter, Bob, 545

<media:player> tag, 442

merge method, 277–278

merging states of detached objects, 277–278

message tag

parameterized messages and, 165–166

retrieving property values from message
files with, 161–162

Message-Driven POJOs, 498–503. See also
ActiveMQ

MessageListenerAdapter class, 503

messages

JMS

consuming with Spring, 503–505

sending with Spring, 502–503

localizing

defining user messages, 159–161

retrieving message values, 161–163

URL mapping for, 163

parameterized

java.text.MessageFormat class, 164–165

message tag, 165–166

validation and, 166–167

printing using render method, 10

messageSource interface, 168–170

602 ■I N D E X

Meta Object Protocol (MOP), 561

MetaClass class, 384, 561–563

metadata

overview of, 362–363

plugin descriptors and, 371–373

metaprogramming APIs, 383–385

metaprogramming (Groovy)

adding behavior at runtime, 563–565

code synthesis, 566–567

intercepting method dispatch, 565

method call, invoking GSP tag as, 116

method expressions for dynamic finders, 256

methodMissing method, 566–567

methods

accessControl, 428

adding

to class, 384

to controller, 384

addJob, 355

addTo*, 253

attach(), 276

authenticate, 422, 424–425

bindData, 80–81

clear(), 269–270

clearErrors(), 48

count() method, 250–251

countBy*, 256

createAlbum(), 83

createCriteria, 257

currentSession(), 269

delete(), 252

deleteJob, 356

encodeAsHTML(), 411, 414

encodeAsURL(), 412

executeQuery, 262

findAllBy*, 256

findBy*, 255–256

flush(), 266

get, 28, 249–250

getFlow(), 244

getMessage, 168

getPrincipal(), 420

GrailsApplication class, 376

Groovy

hasProperty, 562

operators and equivalent, 559–560

respondsTo, 562

step, 552

hasErrors(), 79

hasRole, 430

inspecting at runtime using MetaClass,
562

intercepting

calls to, 90–91

dispatch of, 565

invokeMethod, overriding, 565

isAttached(), 276

isPermitted, 438

list(), 250–251

listOrderBy*, 251

lock(), 286–287

Math.min, 412

merge, 277–278

methodMissing, 566–567

mockDomain, 92

mocking with ExpandoMetaClass, 186

MultipartFile interface, 88

nullSafeGet, 528

nullSafeSet, 528

onNewAlbum, 505, 511–512

onNotAuthenticated(), 428

pauseAll, 355

pauseJob, 355

pauseJobGroup, 355

purchaseAlbum, 293–294

read, 250

Realm class, 419

redirect, 31, 73–74

603■I N D E X

Find it faster at http://superindex.apress.com

rejectValue, 100

removeFrom*, 253

render

description of, 10, 31

template argument, 177

view argument, 76

resumeAll, 355

role(name), 428

save()

adding at runtime

on domain object, 47

Hibernate and, 251–252, 267

sendMail, 346

setCurrentState(String), 246

setRollbackOnly(), 273

sort, 252

Spring Errors interface, 48

step, 322

swapCase, 563–564

taskdef, 318

toString(), 25

triggerJob, 355

validate(), 48, 79

withFormat, 453–454, 459

withSession, 269, 322

withTransaction, 273, 295–296, 322

methods on primitives (Groovy), 558–559

Metro plugin, 479

MIME types, configuring additional, 453

mockDomain method, 92

mocking cacheService, 395

mocking capabilities, 61

mocks, unit tests and, 11

model

controllers and, 75

creating, 108–109

modularizing applications with plugins,
397–406

MonetaryAmount class, 526

MonetaryAmountUserType, 526–528

MOP (Meta Object Protocol), 561

multiline strings, using to provide help, 316

MultipartFile interface (Spring), 87

MultipartHttpServletRequest interface
(Spring), 86–88

multiple URL mappings classes

defining, 155

testing, 155–158

music action, 433

music namespace, defining, 190

music, streaming with QuickTime, 446

<music:albumArt> tag, 191

music.gsp view, 433–434

MVC framework, 8

MVC pattern, 108–109

MySQL database, configuring, 37–39

■N
namespace

defining for tag libraries, 138

music, 190

NetBeans, 337–338

newsletter.gsp view, 360–361

NewsLetterJob, full code for, 359–360

nonrestrict-read-write cache policy, 283

nullSafeGet method, 528

nullSafeSet method, 528

■O
object-oriented (OO) applications, domain

model and, 45

object-relational mapping (ORM), 2, 18

objects

See also detached objects; true object
orientation

Ajax.Request, 457–458

command

defining, 82–83

using, 83–84

using with flows, 231–235

604 ■I N D E X

objects (continued)

CreditCardCommand, 233

domain

data binding to multiple, 80

embedding, 59–60

mapping to relational databases, 45

updating with request parameters, 78

equality of, 276

Expando, 555

GrailsApplication, 379

HttpServletResponse, 89

marshaling

to JSON, 463–466

to XML, 460–463

multiple reads returning same, 266

params, populating class by passing, 77

reading, 249–250

request, inputStream property, 89

response, outputStream property, 89

Song, 47, 48

unmarshaling, 466–472

XMLHttpRequest, referencing, 171–173

obtaining session, 268–269

onChange event, plugins and, 385–387

onComplete event, 178

onConfigChange event, plugins and, 387

one-to-many relationship

bidirectional, 522–523

overview of, 24, 54–56

unidirectional, 521

one-to-one relationships, 53–54

onLoading event, 178

onNewAlbum method, 505, 511–512

onNotAuthenticated() method, 428

onShutdown event, plugins and, 387

Operations tab (JConsole), 302

operator method names (Groovy), 559–560

operator overloading (Groovy), 559–560

operators

built-in (Groovy), 560

dot deference, 305

Elvis (?:), 165

safe deference (?.), 112

spread (*), 259

spread dot (*.), 385

optimistic locking, 53, 285–286

OptimisticLockingFailureException,
285–286

optimizing performance. See performance
tuning in GORM

org.apache.commons.logging.Log API, 67

org.hibernate package, 254

org.jsecurity.authc package, exception types,
423

org.jsecurity.authz.Permission interface, 421

org.jsecurity.mgt.SecurityManager interface,
425

org.springframework.mock.web.MockHttpS
ervletResponse class, 92

org.springframework.validation package
(Spring), 79

org.springframework.web.multipart.Multipa
rtFile interface (Spring), 87

org.springframework.web.multipart.Multipa
rtHttpServletRequest interface
(Spring), 86

ORM (object-relational mapping), 2, 18

ORM DSL

for domain mapping, 51–53

legacy mapping with

association mapping, changing,
521–524

composite identifiers, using, 531–532

database identity generator, changing,
529–531

Hibernate types, 524–529

overview of, 519

table and column name mapping,
changing, 520–521

605■I N D E X

Find it faster at http://superindex.apress.com

ORM tools, working with, 265

outputStream property (response object), 89

overriding Spring beans, 492–493

owning side of one-to-one relationships, 53

■P
package-level visibility, 548

package-plugin command, 389

packages

See also specific packages

benefits of, 18

imported by Groovy by default, 109

packaging plugins, 389–390

page context, 111

page directives (GSP), 109

paginate tag (GSP),126–131

pagination

DoS vulnerability and, 412

of records with step method, 322

through set of results, 262–263

of views, 125–131

parameterized messages

java.text.MessageFormat class, 164–165

message tag, 165–166

validation and, 166–167

parameters

embedding in URL mapping, 145–147

paginate tag, 129

request

accessing in controller action, 146

content negotiation with, 459

controllers and, 73

decoding to replace underscores with
spaces, 147

embedding in URL mapping, 146

populating class with, 77

specifying additional, 147

updating existing object with, 78

URL attacks and, 78

specifying additional in URL mapping,
147–148

params object, populating class by passing,
77

params property, 73

parsing

Gant command-line arguments, 314–315

JSON on client, 464

pauseAll method, 355

pauseJob method, 355

pauseJobGroup method, 355

pausing and resuming jobs, 355

Payment domain class, 209

performance, Ajax and, 197–198

performance tuning in GORM

associations, 278–281

batch fetching, 281–282

caching, 282–284

inheritance strategies, 285

overview of, 278

permgen space, 362

Permission domain class, 436–437

permission-based security, implementing
with JSecurity plugin, 433–446

permissions (JSecurity plugin), 421

persistence layer (GORM)

associations, 252–254

listing, sorting and counting, 250–251

reading objects, 249–250

saving, updating, and deleting, 251–252

persistence life cycle, 274–275

persistent data, querying

criteria queries, 257–261

dynamic finders, 255–256

HQL and SQL, 261–262

overview of, 254

pagination, 262–263

query by example, 261

persisting fields to database, 45–46

606 ■I N D E X

Person class

custom table mapping for, 53

database mapping and, 51

mapping property, 52

person table, 51, 57

pessimistic locking, 286–287

play action (SongController), 442

play.gsp view, 443–444

player table, table-per-subclass mapping, 57

plugin descriptors

metadata and, 371–373

supplying hooks with, 374–375

plugin system

commands

for discovery, 367–369

for installation, 369–370

local plugins, 370

overview of, 367

plugin-info command, 368–369

plugins

See also blog plugin example; GORM

adding behavior with, 391–397

application artefacts, supplying with,
373–374

for application modularity, 397–406

audit-logging, 368

Authentication, 416

Axis 2, 479

creating, 370–371

custom artifact types, 376–379

DBMigrate, 321

distributing, 389–390

events and application reloading, 385–387

fckeditor, 402–404

Feeds, 473–476

Firefox Poster

ACCEPT header, specifying, 468

installing, 467

main window, 467

response window, 468

tray icon, 467

Java Management Extensions (JMX),
299–304

JetGroovy, 336

JSecurity

authentication realms, 419–420

authentication, implementing with,
422–427

filters, 427–429

overview of, 416, 419

permission-based security,
implementing, 433–446

role-based security, implementing,
429–430

roles and permissions, 421

subjects and principals, 420

view, securing, 431–432

working with, 421

LiquiBase, 321

local repositories of, 390–391

Mail, 346

metaprogramming APIs, 383–385

Metro, 470

modifying web.xml file with, 388–389

packaging and distributing, 389–390

Quartz

adding and removing jobs, 355–356

ArtefactHandler interface for, 377

cron jobs, scheduling, 351–353

description of, 349, 376

installing, 349–350

onChange event, 386

pausing and resuming jobs, 355

scheduler, 354

simple jobs, scheduling, 350–351

trigger, 354–355

triggering jobs, 355

Remoting, 481

Searchable, 194–197

607■I N D E X

Find it faster at http://superindex.apress.com

security frameworks, 416

SOAP web services via, 479–482

Spring beans

dynamic, using conventions, 382–383

providing, 379–382

supporting exposing services, 303

variables, 375–376

XFire, 303–304, 479–482

XML-RPC, 303

POJO entities, using constraints with,
541–542

populating

class, 77

data, providing form for, 84

database with BootStrap classes, 364–365

parameterized message

dynamically, 165

with Groovy, 165

with Java, 164

with message tag, 165

port conflicts, dealing with, 13

Post domain class for blog plugin, 398

POST request, REST and, 466–472

PostController for blog plugin, 399

Poster plugin (Firefox)

ACCEPT header, specifying, 468

installing, 467

main window, 467

response window, 468

tray icon, 467

_post.gsp template for blog plugin, 401

price property (Album domain class), 209

principals (JSecurity plugin), 420

printing message using render method, 10

private fields, using to hold action code, 228

production environment

configuring MySQL for, 37–39

overview of, 33–34

progress indicator, displaying, 178

projections, querying with, 260–261

properties

bean argument, 491–492

ControllerUnitTestCase class, 93

transient (domain classes), 50–51

properties file

default messages, 166–167

defining user messages in, 159–161

retrieving message values from, 161–163

Prototype library

Ajax.Request object, 457–458

overview of, 173

parsing JSON on client, 464

responders mechanism, 179

telling Grails to use, 173

prototyped controller, 65

provider, Ajax, changing, 174–175

purchase, confirming, 237

purchaseAlbums method (StoreService),
293–294

PUT request, REST and, 472

■Q
Quartz plugin

adding and removing jobs, 355–356

ArtefactHandler interface for, 377

cron jobs, scheduling, 351–353

description of, 349, 376

installing, 349–350

onChange event, 386

pausing and resuming jobs, 355

scheduler, 354

simple jobs, scheduling, 350–351

triggering jobs, 355

triggers, 354–355

queries

for genre recommendations, 223

String-based, 223

for user recommendations, 225

query by example (GORM), 261

608 ■I N D E X

query cache, 284

querying from GORM

criteria queries, 257–261

dynamic finders, 255–256

HQL and SQL, 261–262

overview of, 254

pagination, 262–263

query by example, 261

QuickTime, using in gTunes application,
440–446

■R
radio tag, 120–121

Rails, view technology of, 110

Rails ActiveRecord, GORM compared to, 266

ranges (Groovy), 556–557

read method, 250

read operation, 23–25

reading

objects, 249–250

request inputStream, 89

read-only cache policy, 283

read-write cache policy, 283

realm class, 419

realms, authentication and, 419–420

reattaching detached objects, 276–277

recommendations

generating, 222–227

showing, 227–231

_recommendations.gsp template, 230

redirect action, using to exit flow, 213

redirect method, 31, 73–74

redirecting requests

controllers and, 73–74

flash scope and, 71

regex (regular expressions), 550–552

register action

creating, 97

implementing, 98–99

updating, 357

register view, 98

register.gsp file, email property, 347

register.gsp view, adding check box to, 357

registering for weekly newsletter
subscription, 356–361

registration

implementing, 97–100

successful, testing, 102

registration code, testing, 100–102

regular expressions (regex), 550–552

rejectValue method, 100

relational databases

ACID properties of, 295

mapping objects to, 45

relationship management methods, 253–254

relationships between domain classes,
building, 53–56

release-plugin command, 390–391

remote access to services, enabling, 300

remote debugging with IDE, 344–345

remote linking, Ajax, 179–193

Remote Procedure Call (RPC) technology,
SOAP as, 478

Remoting plugin, 303, 481

removeFrom* method, 253

removing

controller and action names from URL, 145

jobs, 355–356

render method

description of, 10, 31

template argument, 177

view argument, 76

render tag (GSP), 132–136

renderArgs property
(ControllerUnitTestCase class), 93

rendering

GSP templates, 132–136

templates, 77

text, controllers and, 73

view, 76

609■I N D E X

Find it faster at http://superindex.apress.com

reports

code coverage, 330–331

from testing, 61

Representational State Transfer. See REST

request, Ajax, flow of, 172

request attributes, controllers and

Java servlets compared to Grails
controllers, 69

redirects and, 71, 73–74

standard, 68

request object, inputStream property, 89

request parameters

accessing in controller action, 146

content negotiation with, 459

controllers and, 73

decoding to replace underscores with
spaces, 147

embedding in URL mapping, 146

populating class with, 77

specifying additional, 147

updating existing object with, 78

URL attacks and, 78

request scope, 70

requests, redirecting

controllers and, 73–74

flash scope and, 71

requireHardCopy view state, 216–218

resources.groovy script, 490

respondsTo method, 562

response object, outputStream property, 89

REST (Representational State Transfer)

content negotiation

overview of, 452

view and, 459–460

with ACCEPT header, 452–457

with CONTENT_TYPE header, 457–458

with file extensions, 458

with request parameters, 459

description of, 449

marshaling objects

to JSON, 463–466

to XML, 460–463

security and, 472–473

unmarshaling objects, 466–472

URL mappings and, 450–452

web services and, 450

restricting access to controller actions, 85

resumeAll method, 355

resuming jobs, 355

retrieving message values from properties
file, 161–163

return statements, 75

returning maps of data to be rendered by
view, 75

reusable code blocks, 552

reusing Grails scripts in Gant, 316

reverse URL mapping, 154–155

Role domain class, 429–430

role(name) method, 428

role-based security, implementing with
JSecurity plugin, 429–430

roles

JSecurity plugin, 421

overview of, 416

restricting access based on, 432

rollingFile appender, 308

RPC (Remote Procedure Call) technology,
SOAP as, 478

RSS standard

creating feeds, 473–476

link discovery, 476–477

run-app command, 13

RunApp.groovy script, 316

running

applications, 13

Grails project from Eclipse, 341

runtime, adding behaviors at, 563–565

run-war command, 41

610 ■I N D E X

■S
safe deference operator (?.), 112

SampleController class

default action, 66

index action, 65

multiple actions, defining, 66

save action (AlbumController), 31

save() method

adding at runtime, 564

on domain object, 47

Hibernate and, 251–252, 267

savepoints, using, 274

saving domain classes, 267

scaffolding

description of, 17

dynamic

controllers and, 19–21

generating for domain class, 130–131

power of command-line, 33

security and, 447

static

controller, generating, 27–31

views, generating, 32, 33

toString() and, 25

scheduling jobs

cron, 351–353

overview of, 349

Quartz plugin

installing, 349–350

scheduler, using, 354

simple, 350–351

triggers and, 354–355

scope attribute, 112

scope property, 297, 497

scopes

controllers and

flash scope, 71–72

overview of, 70

flow, 204

scoping services, 297–298

Scriptaculous library, 193

scriptlets (GSP), 109–110

scripts

See also specific scripts

Gant

automating deployment to Tomcat,
317–320

creating, 312–313

documenting, 315–316

exporting data to XML, 320–325

Grails, reusing in Gant, 316

search action (StoreController), 195

Searchable plugin, 194–197

_searchResults.gsp template, 196–197

second-level cache, 282–284

security

against attacks

batch data binding, 413–414

cross-site scripting, 409–412

DoS, 412

Groovy injection, 409

SQL or HQL injection, 407–409

application-layer

filters, 417–418

overview of, 416

dynamic codecs and, 414–416

JSecurity plugin

authentication realms, 419–420

authentication, implementing with,
422–427

filters, 427–429

overview of, 419

permission-based security,
implementing, 433–446

role-based security, implementing,
429–430

roles and permissions, 421

subjects and principals, 420

view, securing, 431–432

611■I N D E X

Find it faster at http://superindex.apress.com

working with, 421

limiting access through URL mappings,
446–448

overview of, 407

REST and, 472–473

scaffolding and, 447

SecurityUtils class, 420

select tag, 121–122

semantics of GORM

clearing session, 269–270

Hibernate Session class, 266–267

obtaining session, 268–269

overview of, 265–266

session flushing

automatic, 270–272

session management and, 267–268

sending

e-mail confirmation, 348

JMS messages with Spring, 502–503

simple mail message, 346

sendMail method, 346

servers, e-mail, integration with, 345–349

service layer, encapsulating logic into, 289

services

in action, 291–293

basics of, 289

defining, 293–294

dependencies and, 289

dependency injection and, 291

exposing, 298–304

scoping, 297–298

testing, 298

as transactional, 183

transactions, 295–297

using, 294–295

Servlet filter, adding with
doWithWebDescriptor hook, 388

servletContext scope, 70

Session class (Hibernate), 266–267

session flushing

automatically, 270–272

manually, 267–268

session management, 267–268

session scope, 70

sessions

clearing, 269–270

obtaining, 268–269

set tag, 111

setCurrentState(String) method, 246

setRollbackOnly() method, 273

settings of DataSource.groovy file, 36

set-version command, 362

SHA1, hashing password with, 426

shop action (StoreController), 135

shop.gsp templates, rendering, 134

shopping-cart, using, 199

shoppingCartFlow, 200–201

show action (AlbumController), 28

Show Album screen, 25

Show Song screen, 23

show.gsp file, reusing storeLayout.gsp file in,
215

show.gsp view, 33

showConfirmation.gsp view, 236–237

showRecommendations state, 227–231

showTime action, 173

Simple Mail Transfer Protocol (SMTP), 345

singleton scope, 297–298

SiteMesh, 2

slashy syntax, 550

SMTP (Simple Mail Transfer Protocol), 345

SOAP standard

calling from client, 482–484

overview of, 449, 478–479

web services via plugins, 479–482

Song class, 46, 62

Song domain class

adding properties to, 19

612 ■I N D E X

Song domain class (continued)

as blank class definition, 19

creating, 18

file property, 444

Song List page, 21

Song table, 45

SongController

alternative to show action, 75

creating, 19

enabling dynamic scaffolding, 20

play action, 442

show action, 75

stream action, 513

Song.groovy file, 18

sort method, 252

SortedSet associations, 252

spread dot (*.) operator (Groovy), 385

spread (*) operator, 259

Spring beans

description of, 187

dynamic, using conventions, 382–383

providing, 379–382

Spring Errors interface, methods in, 48

Spring Framework

See also Spring beans

ApplicationContext, 379

ActiveMQ

configuring with BeanBuilder, 500–502

overview of, 498–499

Queues section, 503

setting up, 499–500

artist subscriptions, enabling, 505–510

asynchronous e-mail notifications,
511–513

basics of, 487–489

BeanBuilder DSL

abstract beans, 495–496

bean scopes, 496–497

configuring ActiveMQ with, 500–502

defining beans, 491–492

dynamically creating beans, 497–498

factory beans, 493–495

inner beans, 495

overriding beans, 492–493

overview of, 490–491

providing Spring beans, 379–382

dependency injection and, 489–490

description of, 2, 487

Grails and, 489

JMS messages

consuming, 503–505

sending, 502–503

messageSource interface, 168–170

mixing Groovy and Java with, 513–516

org.springframework.mock.web.MockHtt
pServletResponse class, 92

org.springframework.validation package,
79

org.springframework.web.multipart.Multi
partFile interface, 87

org.springframework.web.multipart.Multi
partHttpServletRequest interface, 86

Spring Web Flow project, 200. See also flows

SQL injection, 407–409

SQL logging, configuring in GORM, 264

stack trace filtering, 309

standard. See Atom standard; RSS standard;
SOAP standard

standard servlet API, 73

standard validators, 47

start states (flows), 200–201

stateless model, 199–200

static scaffolding

controller, generating, 27–31

views, generating, 32–33

static text, including in URL mapping, 144

step method, 322, 552

storage, flows and, 204–205

StoreBuyFlowTests suite, 244

613■I N D E X

Find it faster at http://superindex.apress.com

StoreController

buy action, 211–212

buyFlow, 212

creating, 9

default index action, 10

genre action, 128

home page, creating, 94–95

printing message with, 13

search action, 195

services and, 291–293

shop action, 135

shoppingCartFlow, 200–201

StoreControllerTests suite, 10–11

storeLayout.gsp file, 214

StoreService class

creating, 290

purchaseAlbums method, 293–294

storeService property, 294–295

Strachan, James, 545

stream action, 444–446

StreamingMarkupBuilder class, 322

streamingService bean

creating, 515

using, 516

StreamingService class, 514–515

StreamingTagLib.groovy file, 441–442

StreamService.java file, 514

String-based queries, 223

strings (Groovy), 549–552

stubs, unit tests and, 11

subflows, 206–208

subjects (JSecurity plugin), 420

subscription to weekly newsletter, 356–361

SubscriptionTagLib class

implementing, 507

testing, 508–509

supported databases, 39–41

SVN repository, creating, 390

swapCase method, 563, 564

SwingBuilder (Groovy), 568

switch statement (Groovy), 560–561

syntax (Groovy)

assertions, 548–549

classes, declaring, 548

closures, 552–553

Expando object, 555

lists and maps, 553–555

overview of, 547–548

ranges, 556–557

strings, 549–552

<sysprops> element, passing system
properties with, 327

■T
table name mapping, changing, 520–521

table-per-hierarchy mapping, 57–58, 285

table-per-subclass mapping, 57–58, 285

tables

See also specific tables

company, 50

default name for, 53

person, 51, 57

player, 57

tag libraries

creating, 137–138

defining namespace for, 138

dynamic tags and, 116

TagLibUnitTestCase class, 508

tags

See also tags, built-in; tags, custom; tags,
dynamic

JSecurity plugin

restricting access using, 439

securing view using, 431–432

message

parameterized messages and, 165–166

retrieving property values from message
files with, 161–162

wrapper, 120

614 ■I N D E X

tags, built-in (GSP)

filtering and iteration

collect, 114–115

findAll, 115–116

iterative, 113–114

logical, 112–113

setting variables with, 111–112

tags, custom (GSP)

basics of, 138–139

creating, 136–137

tag library, creating, 137–138

testing, 139–141

tags, dynamic (GSP)

forms and fields, creating

checkBox and radio tags, 120–121

datePicker tag, 122–123

form tag, 119–120

select tag, 121–122

textField tag, 120

linking

createLink and createLinkTo tags,
118–119

link tag, 117–118

overview of, 116–117

paginating views, 125–131

rendering templates, 132–136

validation and error handling

eachError tag, 124

hasErrors tag, 124

overview of, 123

taskdef method, 318

template argument (render method), 177

template-driven scaffolding. See static
scaffolding

templates

AlbumArtService

creating, 183

enabling caching, 188

full code for, 188–190

_album.gsp

adding album art to, 192

buy action, 211

implementing, 180

AlbumList, rendering, 132

_albumList.gsp, 181

_artist.gsp, updating, 509

extracting common GSP code into, 214

GSP, rendering, 132–136

HelloWorld.groovy script, 312

job, 350

login, 175

_post.gsp, 401

_recommendations.gsp, 230

rendering, 77

_searchResults.gsp, 196–197

shop.gsp, rendering, 134

subscribe, 506

_welcomeMessage.gsp, 177

test environment, 33–34

test suites of controllers, 10–11

test target, running in build.xml file, 325

test/reports directory, 12

test-app command, 12–13, 61

TestApp.groovy script, 316

testing

Amazon web services, 185–187

ArtefactHandler interface, 378

controllers, 91–93

custom tags, 139–141

data binding in flows, 246–247

domain classes, 60–63

flows, 244–247

localization, 163

login process, 104–106

<music:albumArt> tag, 191

registration code, 100–102

service code, 480–481

services, 298

615■I N D E X

Find it faster at http://superindex.apress.com

StoreController index action, 11

SubscriptionTabLib class, 508–509

unit tests, 11, 61

UrlMappings class, 155–158

testLoginPasswordInvalid test case, 105

testLoginSuccess test case, 105

testLoginUserNotFound test case, 104

testPasswordsDontMatch case, 100

testRegistrationFailed case, 101

tests, running in TextMate, 343

text

rendering, 73

static, including in URL mapping, 144

text field, 120

textField tag, 120

TextMate text editor, 342–344

time stamping, automatic, 288

timeZoneSelect tag, 122

Tomcat, automating deployment to, 317–320

TomcatDeploy.groovy file

deploy target, 319

full code for, 320

main target, 319

overview of, 318

toString() method, 25

transactional cache policy, 283

transactional property, 295

transactional service classes, 512

transactional write-behind, 267

transactions

description of, 295–297

in GORM, 272–274

TransactionStatus interface, 296–297

transient properties (domain classes), 50–51

transition actions (flows)

confirming purchase using, 238–239

description of, 206

transitions, dynamic, and gTunes, 235–236

transitive dependencies resolution, 373

transitive persistence, 254

triggering

events

from action state, 203

from view state, 205–206

with return value, 203

jobs, 355

triggerJob method, 355

true object orientation (Groovy)

methods on primitives, 558–559

operator overloading, 559–560

overview of, 557–558

truth, 560–561

truth (Groovy), 560–61

type-conversion errors, 78

■U
uninstall-plugin command, 370

unit tests, 11, 61

UnknownAccountException, 423

unmarshaling objects, 466–472

unobtrusive framework, 541

update action (AlbumController), 30

update operation, 25

updating

existing object with request parameters,
78

instance, 251

uploading files

data binding and, 88–89

MultipartHttpServletRequest interface
and, 87–88

overview of, 86

URL attacks, request parameters and, 78

URL escaping, 411–412

URL mapping

applying constraints to, 149–150

blog plugin, 401

changing to exclude /services URI, 479

default, 143–144

616 ■I N D E X

URL mapping (continued)

embedding parameters in, 145–147

to HTTP request codes, 153–154

to HTTP request methods, 151–153

including static text in, 144

for internationalization and localization,
163

limiting access through, 446–448

multiple classes, defining and testing,
155–158

overview of, 143

removing controller and action names
from, 145

RESTful, 450–452

reverse, 154–155

specifying additional parameters in,
147–148

Subscriptions example, 510

to view, 148–149

wildcards, including in, 150–151

UrlMappings class, 155–158

UrlMappings.groovy, 143

User class

constraining password property in, 49

email property, 347

User domain class, 95–96, 430, 535

user interface, validation messages in, 167

user messages

See also messages

defining in properties file, 159–161

user recommendations, querying for, 225

User.hbm.xml file, 533–535

USER_HOME directory, 314

UserController, 104, 176, 416

UserControllerTests class, 100, 531–532

■V
validate() method, 48, 79

validation

of data with command objects, 84

description of, 21

of domain classes, 46–49

flow transition actions for, 206

gTunes, 218–222

of incoming data, 78–79

parameterized messages and, 166–167

with tags

eachError tag, 124

hasErrors tag, 124

overview of, 123

validators standard, 47

variables

Gant, command-line, 313–314

plugins, 375–376

setting with tags, 111–112

verifying flow state with assertions, 236–244

version column, 46

version number, 362–363

view states (flows)

overview of, 201–203

requireHardCopy, 216–218

triggering events from, 205–206

view technologies for web applications

See also GSP

overview of, 107

RHTML, 110

viewing JMX exposed services, 302

views

See also specific views

content negotiation and, 459–460

controllers and

finding, selecting, and rendering, 76

securing with JSecurity plugin, 431–432

withFormat method, 453–454, 459

generating, for actions to delegate to,
32–33

paginating, 125–131

URL mapping to, 148–149

617■I N D E X

Find it faster at http://superindex.apress.com

■W
war command, 41

WAR (Web Application Archive) file

customizing, 363

deploying, 361–362

deploying application with, 41–42

version number, 362–363

web flows

action and view states, 202–203

defining, 200

end state, defining, 201–202

gTunes

credit card details, entering, 231–235

data binding and validation, 218–222

dynamic transitions, 235–236

prices for albums, providing, 209

purchase, 208

querying about CD purchase, 216–218

recommendations, generating, 222–227

recommendations, showing, 227–231

validating login, 212–216

verifying flow state with assertions,
236–244

java.io.Serializable interface and, 204–205

scopes, 204

start state, defining, 200–201

subflows and conversation scope, 206–208

testing, 244–247

transition actions and form validation, 206

view state, triggering events from, 205–206

web services

Amazon

creating, 183–185

setting up, 182–183

testing, 185–187

Atom and RSS

creating feeds, 473–476

link discovery, 476–477

overview of, 449

RESTful

content negotiation, 452–460

marshaling objects to JSON, 463–466

marshaling objects to XML, 460–463

overview of, 450

security and, 472–473

unmarshaling objects, 466–472

URL mappings and, 450, 452

SOAP standard

calling from client, 482–484

overview of, 478–479

plugins and, 479–482

Web Services Description Language (WSDL)

example, 481–482

SOAP and, 478

web sites

Java Cryptography Extension, 414

QuickTime, 440

security frameworks, 416

xssed.com, 409

web.xml file, modifying with plugins,
388–389

WebFlowTestCase

extending, 244

methods, 245

_welcomeMessage.gsp template, 177

while tag (GSP), 114

wildcard (*) character, 150, 197, 417

wildcards, including in URL mappings,
150–151

Windows shell, JAVA_OPTS, setting in, 300

withFormat method, 453–454, 459

withSession method, 269, 322

withTransaction method, 273, 295–296, 322

wrapper tags, 120

writing binary response, 89

WSDL (Web Services Description Language)

example, 481–482

SOAP and, 478

618 ■I N D E X

■X
XFire plugin

description of, 303–304, 479

using, 479–482

XML

exporting data to, 320–325

marshaling capabilities, automatic, 456

marshaling objects to, 460–463

unmarshaling objects, 466–472

XMLHttpRequest object, referencing,
171–173

XML-RPC plugin, 303

XmlSlurper parser (Groovy), 388

XSS (cross-site scripting) attacks

HTML escaping and, 409–411

URL escaping and, 411–412

xssed.com site, 409

■Z
zip files, 389

