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Introduction

In the late '90s I was working on a project developing large-scale enterprise learning manage-
ment systems using early J2EE technologies such as EJB 1.0 and the Servlet framework. The Java
hype machine was in full swing, and references to “EJB that, and Java this” were on the cover of
every major IT publication.

Even though what we were doing—and learning as we did it—felt so horribly wrong, the
industry kept telling us we were doing the right thing. EJB was going to solve all our problems,
and servlets (even without a view technology at the time) were the right thing to use. My, how
times have changed.

Nowadays, Java and J2EE are long-forgotten buzzwords, and the hype machine is throwing
other complex acronyms at us such as SOA and ESB. In my experience, developers are on a con-
tinued mission to write less code. The monolithic J2EE specifications, like those adopted by the
development community in the early days, didn’t help. If a framework or a specification is overly
complex and requires you to write reams of repetitive code, it should be an immediate big red
flag. Why did we have to write so much repetitive boilerplate code? Surely there was a better way.

In the end, developers often influence the direction of technology more than they know. Why
do so many developers favor REST over SOAP for web services? Or Hibernate over EJB for persis-
tence? Or Spring over JNDI for Inversion of Control? In the end, simplicity often wins the day.

Certainly, working with Spring and Hibernate feels a lot better than traditional J2EE
approaches; in fact, I strove to use them whenever possible, usually in combination with Web-
Work, and delivered a number of successful projects with this stack. Nevertheless, I still felt I
had to deal with the surrounding infrastructural issues and configuration, rather than the prob-
lem at hand. After all, the more efficient I could be as a developer when doing “real” work, the
more time I would have to do what should be driving every developer: spending time with loved
ones and learning new and exciting technologies.

In 2003, Groovy entered the picture. I had always been fond of looser rules governing
dynamic languages in certain contexts, having worked extensively with Perl, Visual Basic, and
JavaScript in the past, and after quickly hacking the WebWork source code, I was able to write
MVC controllers (or actions in WebWork lingo) with Groovy in no time.

Groovy was perfect for controllers whose sole responsibility should be to delegate to busi-
ness logic implemented by a service and then display an appropriate view. I was starting to
have even more time for the good things in life. Then came the storm of dynamic language-
based frameworks led by Ruby on Rails.

Unfortunately, it was all a little late. Java, the community, the tools, the frameworks, and
the mind share are well-embedded. The size that Java has grown to is quite staggering, and hav-
ing been in the training business for many years, I see it showing no signs of slowing, contrary
to popular belief. Still, Java has its problems, and I wanted to write less code. Grails was born
with this goal in mind in the summer of 2005 after I, Steven Devijver, and Guillaume Laforge
kicked off a discussion about its conception on the Groovy mailing list.

Fundamentally, there is nothing at all wrong with many of the specifications that form part
of J2EE. They are, however, at a rather low level of abstraction. Frameworks such as Struts,
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WebWork, and more recently JSF have tried to resolve this issue; however, Java and its static
typing don’t help. Groovy, on the other hand, allows that higher level of abstraction. Having
used it for controllers, it was now time to take it to every layer—from controllers to tag libraries
and from persistence to the view technology.

The APIs you can create with Groovy’s metaprogramming support are amazingly simple
and concise. Grails uses every single dynamic trick, at both runtime and compile time, from
custom domain-specific languages to compile-time mixins, with two fundamental goals in
mind: write less code and be Java friendly.

Are Groovy and Grails a replacement for Java, like other dynamic language frameworks?
No, on the contrary, they're designed to work with Java. To embrace it. To have Java at their
very core. Grails is Java through and through, and it allows you to pick and choose which fea-
tures to implement with dynamic typing and which to entrust to the safer hands of static
typing.

Grails was born from the realization that there is never only just one tool for the job. Grails
is about providing an entry point for the trivial tasks, while still allowing the power and flexibil-
ity to harness the full Java platform when needed. I hope you enjoy the book as much as I have
enjoyed writing it and being part of the Grails community.

—Graeme Rocher

Who This Book Is For

Grails forms just one framework that is driving the movement toward dynamic language-based
frameworks. In this sense, anyone who is interested in dynamic languages, whether Perl, Ruby,
or Python, will gain something from reading this book, if just to acquire insight into what the
alternatives are.

If platform is not a choice and Java is the way your project is going, Grails can provide
features like no other framework. In this circumstance, Grails may have the answers you are
looking for. Primarily, however, this book will be of most benefit to those who know and love
the Java platform—those who appreciate the Java language for all its strong points but want
something better as a web framework.

Grails is providing the answers to the long search for something better in the Java world by
presenting a framework that solves the common problems in an unobtrusive, elegant manner.
But this does not mean that the subject matter of this book is trivial. We’ll be challenging you
with advanced usages of the Groovy language and real-world examples.

Furthermore, you'll be pushing the boundaries of what is possible with a dynamic lan-
guage like Groovy, extending it into every tier of a typical web application from the view layer
with Ajax-enabled technology to the persistence tier with rich domain models. For experienced
Java developers, it should be an enlightening experience, because we’ll explore features not
found in Java such as closures, builders, and metaprogramming.

Through all this, however, although the subject matter and examples are advanced, the
solutions are simple, and along the way you may learn a new way to approach web application
development.
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How This Book Is Structured

This book is divided into 17 chapters and one appendix. Unlike the first edition, coverage of
Groovy is saved for the appendix. If you have no experience using Groovy, then it is recom-
mended that you read the appendix first as the chapters themselves dive straight into Grails
starting with Chapter 1, which covers the basic philosophy behind Grails.

In Chapter 2 we take you through a kick-start, demonstrating how you can quickly get
productive with Grails. Then from Chapter 3 onward we delve into detailed coverage of each
concept within Grails from domain classes in Chapter 3 to views in Chapter 5. By this point, you
should have a good understanding of the basics.

The book will then dive straight into the nitty-gritty details of Grails in Chapter 6 with cov-
erage of URL mappings, followed by the multilingual experience that is internationalization in
Chapter 7. If you haven’t had enough excitement by this point, then Chapter 8 should solve that
with coverage of Grails’ support for adaptive Ajax.

In Chapter 9 the book will begin to cover some of the more advanced features of Grails star-
ing with Web Flow. In Chapter 10 you'll get a much better understanding of how GORM works,
while in Chapter 11 you’ll learn how to leverage declarative transactions with Grails services.

Chapter 12 goes into a lot of detail on how you can integrate Grails into your existing eco-
system; then in Chapter 13 you will get to become a Grails plugin developer as you explore the
features offered by Grails’ plugin system. Security is the focal point for Chapter 14, while in
Chapter 15 we’ll cover publishing web services with Grails.

Finally, Chapter 16 and Chapter 17 are dedicated to the more advanced topics of integrat-
ing Grails with the underlying Spring and Hibernate frameworks.

Conventions

This book uses a diverse range of languages, including HTML, XML, JavaScript, Groovy, and
Java. Nonetheless, each example is introduced appropriately and appears in a fixed-width
Courier font. We have also endeavored to be consistent in the use of naming conventions
throughout the book, making the examples as clear as possible.

In many cases, the original source code has been reformatted to fit within the available
page space, with additional line breaks and modified code indentation being common. To
increase the clarity of the code, some examples omit code where it is seen as unnecessary. In
cases where the code is omitted between two blocks of code, an ellipsis (...) is used to indicate
where the missing code would have been.

Prerequisites

This book shows you how to install Grails; in the examples, we use the 1.1 release. As of this
writing, the 1.1 release was not quite final, but by the time of publication, Grails 1.1 should be
final (or nearly so). However, Grails itself is dependent on the existence of an installed Java Vir-
tual Machine. As a minimum, you will need to install JDK 1.5 or newer for the examples in this
book to work.
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Installing an application server, such as Tomcat, and a database server, such as MySQL, is
entirely optional, because Grails comes bundled with an embedded server and database. Nev-
ertheless, to use Grails in production, you may at least want to set up a database server.

Downloading the Code

The code for the examples in this book is available in the Source Code section of the Apress web
site at http://www.apress.com. Chapter-by-chapter source code is also available in the Code-
haus Subversion repository at http://svn.codehaus.org/grails/trunk/samples/dgg.

Contacting the Authors

Graeme is an active member of the open source community and welcomes any com-

ments and/or communication. You can reach him via e-mail at graeme.rocher@gmail.com
or via his blog at http://graemerocher.blogspot.com. You can reach Jeff via e-mail at
jeff@jeffandbetsy.net or via his blog at http://javajeff.blogspot.com. Alternatively, you
can simply pop a message on the Grails mailing lists, the details for which can be found here:
http://grails.org/Mailing+lists.



CHAPTER 1

The Essence of Grails

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

To understand Grails, you first need to understand its goal: to dramatically simplify enterprise
Java web development. To take web development to the next level of abstraction. To tap into
what has been accessible to developers on other platforms for years. To have all this but still
retain the flexibility to drop down into the underlying technologies and utilize their richness
and maturity. Simply put, we Java developers want to “have our cake and eat it too.”

Have you faced the pain of dealing with multiple, crippling XML configuration files and an
agonizing build system where testing a single change takes minutes instead of seconds? Grails
brings back the fun of development on the Java platform, removing barriers and exposing users
to APIs that enable them to focus purely on the business problem at hand. No configuration,
zero overhead, immediate turnaround.

You might be wondering how you can achieve this remarkable feat. Grails embraces con-
cepts such as Convention over Configuration (CoC), Don’t Repeat Yourself (DRY), and sensible
defaults that are enabled through the terse Groovy language and an array of domain-specific
languages (DSLs) that make your life easier.

As abudding Grails developer, you might think you’re cheating somehow, that you should
be experiencing more pain. After all, you can’t squash a two-hour gym workout into twenty
minutes, can you? There must be payback somewhere, maybe in extra pounds?

As a developer you have the assurance that you are standing on the shoulders of giants
with the technologies that underpin Grails: Spring, Hibernate, and, of course, the Java plat-
form. Grails takes the best of dynamic language frameworks like Ruby on Rails, Django, and
TurboGears and brings them to a Java Virtual Machine (JVM) near you.
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Simplicity and Power

Afactor that clearly sets Grails apart from its competitors is evident in the design choices made
during its development. By not reinventing the wheel, and by leveraging tried and trusted
frameworks such as Spring and Hibernate, Grails can deliver features that make your life easier
without sacrificing robustness.

Grails is powered by some of the most popular open source technologies in their respec-
tive categories:

* Hibernate: The de facto standard for object-relational mapping (ORM) in the Java world

e Spring: The hugely popular open source Inversion of Control (IoC) container and wrap-
per framework for Java

e SiteMesh: A robust and stable layout-rendering framework
* Jetty: A proven, embeddable servlet container

* HSQLDB: A pure Java Relational Database Management System (RDBMS)
implementation

The concepts of ORM and IoC might seem a little alien to some readers. ORM simply
serves as a way to map objects from the object-oriented world onto tables in a relational data-
base. ORM provides an additional abstraction above SQL, allowing developers to think about
their domain model instead of getting wrapped up in reams of SQL.

IoC provides a way of “wiring” together objects so that their dependencies are available
atruntime. As an example, an object that performs persistence might require access to a
data source. IoCrelieves the developer of the responsibility of obtaining a reference to the data
source. But don’t get too wrapped up in these concepts for the moment, as their usage will
become clear later in the book.

You benefit from Grails because it wraps these frameworks by introducing another layer of
abstraction via the Groovy language. You, as a developer, will not know that you are building a
Spring and Hibernate application. Certainly, you won’t need to touch a single line of Hibernate
or Spring XML, but it is there at your fingertips if you need it. Figure 1-1 illustrates how Grails
relates to these frameworks and the enterprise Java stack.
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Grails

Java EE Spring Hibernate SiteMesh

Groovy

The Java Development Kit

The Java Language
(JDK)

The Java Virtual Machine

Figure 1-1. The Grails stack

Grails, the Platform

When approaching Grails, you might suddenly experience a deep inhalation of breath followed
by an outcry of “not another web framework!?” That’s understandable, given the dozens of web
frameworks that exist for Java. But Grails is different, and in a good way. Grails is a full-stack
environment, not just a web framework. It is a platform with ambitious aims to handle every-
thing from the view layer down to your persistence concerns.

In addition, through its plugins system (covered in Chapter 13), Grails aims to provide
solutions to an extended set of problems that might not be covered out of the box. With Grails

you can accomplish searching, job scheduling, enterprise messaging and remoting, and more.

The sheer breadth of Grails’ coverage might conjure up unknown horrors and nightmarish
thoughts of configuration, configuration, configuration. However, even in its plugins, Grails
embraces Convention over Configuration and sensible defaults to minimize the work required
to get up and running.

We encourage you to think of Grails as not just another web framework, but the platform
upon which you plan to build your next web 2.0 phenomenon.

3
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Living in the Java Ecosystem

As well as leveraging Java frameworks that you know and love, Grails gives you a platform that
allows you to take full advantage of Java and the JVM—thanks to Groovy. No other dynamic
language on the JVM integrates with Java like Groovy. Groovy is designed to work seamlessly
with Java at every level. Starting with syntax, the similarities continue:

¢ The Groovy grammar is derived from the Java 5 grammar, making most valid Java code
also valid Groovy code.

¢ Groovy shares the same underlying APIs as Java, so your trusty javadocs are still valid!

* Groovy objects are Java objects. This has powerful implications that might not be immedi-
ately apparent. For example, a Groovy object can implement java.io.Serializable and be
sent over Remote Method Invocation (RMI) or clustered using session-replication tools.

¢ Through Groovy’s joint compiler you can have circular references between Groovy and
Java without running into compilation issues.

* With Groovy you can easily use the same profiling tools, the same monitoring tools, and
all existing and future Java technologies.

Groovy’s ability to integrate seamlessly with Java, along with its Java-like syntax, is the
number-one reason why so much hype was generated around its conception. Here we had a
language with similar capabilities to languages such as Ruby and Smalltalk running directly
in the JVM. The potential is obvious, and the ability to intermingle Java code with dynamic
Groovy code is huge. In addition, Groovy allows you to mix static types and dynamic types,
combining the safety of static typing with the power and flexibility to use dynamic typing
where necessary.

This level of Java integration is what drives Groovy’s continued popularity, particularly
in the world of web applications. Across different programming platforms, varying idioms
essentially express the same concept. In the Java world we have servlets, filters, tag libraries,
and JavaServer Pages (JSP). Moving to a new platform requires relearning all of these con-
cepts and their equivalent APIs or idioms—easy for some, a challenge for others. Not that
learning new things is bad, but a cost is attached to knowledge gain in the real world, which
can present a major stumbling block in the adoption of any new technology that deviates
from the standards or conventions defined within the Java platform and the enterprise.

In addition, Java has standards for deployment, management, security, naming, and
more. The goal of Grails is to create a platform with the essence of frameworks like Rails or
Django or CakePHP, but one that embraces the mature environment of Java Enterprise Edition
(Java EE) and its associated APIs.
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Grails is, however, one of these technologies that speaks for itself: the moment you experi-
ence using it, a little light bulb will go on inside your head. So without delay, let’s get moving
with the example application that will flow throughout the course of this book. Whereas in this
book’s first edition we featured a social-bookmarking application modeled on the del.icio.us
service, in this edition we’ll illustrate an entirely new type of application: gTunes.

Our gTunes example will guide you through the development of a music store similar to
those provided by Apple, Amazon, and Napster. An application of this nature opens up a wide
variety of interesting possibilities from e-commerce to RESTful APIs and RSS or Atom feeds.
We hope it will give you a broad understanding of Grails and its feature set.

Getting Started

Grails’ installation is almost as simple as its usage, but you must take into account at least one
prerequisite. Grails requires a valid installation of the Java SDK 1.5 or above which, of course,
you can obtain from Sun Microsystems at http://java.sun.com.

After installing the Java SDK, set the JAVA_HOME environment variable to the location where
you installed it and add the JAVA_HOME/bin directory to your PATH variables.

Note If you are working on Mac 0S X, you already have Java installed! However, you still need to set
JAVA_HOME in your ~/.profile file.

To test your installation, open up a command prompt and type java -version:
$java -version

You should see output similar to Listing 1-1.

Listing 1-1. Running the Java Executable

java version "1.5.0 13"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0 13-b05-237)
Java HotSpot(TM) Client VM (build 1.5.0 13-119, mixed mode, sharing)

As is typical with many other Java frameworks such as Apache Tomcat and Apache Ant,
the installation process involves following a few simple steps. Download and unzip Grails
from http://grails.org, create a GRAILS_HOME variable that points to the location where
you installed Grails, and add the GRAILS_HOME/bin directory to your PATH variable.
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To validate your installation, open a command window and type the command grails:
$ grails
If you have successfully installed Grails, the command will output the usage help shown in

Listing 1-2.

Listing 1-2. Running the Grails Executable

Welcome to Grails 1.1 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /Developer/grails-1.1

No script name specified. Use 'grails help' for more info or 'grails interactive' to

enter interactive mode

As suggested by the output in Listing 1-2, typing grails help will display more usage
information including a list of available commands. If more information about a particular
command is needed, you can append the command name to the help command. For exam-
ple, if you want to know more about the create-app command, simply type grails help
create-app:

$ grails help create-app

Listing 1-3 provides an example of the typical output.

Listing 1-3. Getting Help on a Command

Usage (optionals marked with *):
grails [environment]* create-app

grails create-app -- Creates a Grails project, including the necessary
directory structure and common files

Grails’ command-line interface is built on another Groovy-based project called
Gant (http://gant.codehaus.org/), which wraps the ever-popular Apache Ant
(http://ant.apache.org/) build system. Gant allows seamless mixing of Ant targets
and Groovy code.

We'll discuss the Grails command line further in Chapter 12.
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Creating Your First Application

In this section you're going to create your first Grails application, which will include a simple
controller. Here are the steps you'll take to achieve this:

1. Run the command grails create-app gTunes to create the application (with “gTunes”
being the application’s name).

2. Navigate into the gTunes directory by issuing the command cd gTunes.

3. Create a storefront controller with the command grails create-controller store.
4, Write some code to display a welcome message to the user.

5. Test your code and run the tests with grails test-app.

6. Run the application with grails run-app.

Step 1: Creating the Application

Sound easy? It is, and your first port of call is the create-app command, which you managed to
extract some help on in the previous section. To run the command, simply type grails create-
app and hit Enter in the command window:

$ grails create-app

Grails will automatically prompt you for a project name as presented in Listing 1-4. When
this happens, type gTunes and hit Enter. As an alternative, you could use the command grails
create-app gTunes, in which cases Grails takes the appropriate action automatically.

Listing 1-4. Creating an Application with the create-app Command

Running script /Developer/grails-dev/GRAILS 1 1/scripts/CreateApp.groovy
Environment set to development
Application name not specified. Please enter: gTunes

Upon completion, the command will have created the gTunes Grails application and the
necessary directory structure. The next step is to navigate to the newly created application in
the command window using the shell command:

cd gTunes

At this point you have a clean slate—a newly created Grails application—with the default
settings in place. A screenshot of the structure of a Grails application appears in Figure 1-2.

We will delve deeper into the structure of a Grails application and the roles of the various
files and directories as we progress through the book. You will notice, however, how Grails con-
tains directories for controllers, domain objects (models), and views.
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Figure 1-2. The gTunes application structure

Step 2: Creating a Controller

Grails is an MVC! framework, which means it has models, views, and controllers to separate
concerns cleanly. Controllers, which are central to a Grails application, can easily marshal
requests, deliver responses, and delegate to views. Because the g