THE EXPERT’S VOICE® IN WEB DEVELOPMENT |

The Definitive Guide to

Grails

Learn from the Grails project founder and key committer how
to leverage Grails—the open source, lightweight web application
framework—using the dynamic Groovy scripting language.

SECOND EDITION

Graeme Rocher and Jeff Brown

Apress:

The Definitive Guide
to Grails

Second Edition

Graeme Rocher and Jeff Brown

Apress:

The Definitive Guide to Grails, Second Edition
Copyright © 2009 by Graeme Rocher, Jeff Brown

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-995-2

ISBN-10 (pbk): 1-59059-995-0

ISBN-13 (electronic): 978-1-4302-0871-6

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Steve Anglin, Tom Welsh

Technical Reviewer: Guillaume Laforge

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell, Gary
Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editors: Nina Goldschlager, Kim Wimpsett

Associate Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Pat Christenson

Proofreader: Kim Burton

Indexer: Becky Hornyak

Artist: April Milne

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
WWW. apTess. com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales-eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

To Birjinia, the love and support you have given me in the last few years will stay with me
forever. Unquestionably yours. Maite zaitut.
—Graeme Rocher

To Betsy, Jake, and Zack, the best team ever.
—Jeff Brown

Contents at a Glance

Aboutthe AUTNOrS Xix
About the Technical Reviewer XXi
ACKNOWIBAgMENTS. xxiii
INtroduCtion XXV
CHAPTER 1 The Essence of Grails ... 1
CHAPTER 2 Getting Started with Grails.................................... 17
CHAPTER 3 Understanding Domain Classes 45
CHAPTER 4 Understanding Controllers.................................... 65
CHAPTER 5 Understanding Views. 107
CHAPTER 6 MappingURLS 143
CHAPTER 7 Internationalization, 159
CHAPTER 8 AjaX........... ... 171
CHAPTER9 CreatingWeb Flows... 199
CHAPTER10 GORM. 249
CHAPTER 11 Services.............. ..ot 289
CHAPTER 12 Integrating Grails 305
CHAPTER13 Plugins............o i, 367
CHAPTER 14 Security........... 407
CHAPTER 15 Web Services.................... i, 449
CHAPTER 16 Leveraging Springo .. 487
CHAPTER 17 Legacy Integration with Hibernate 519
APPENDIX The Groovy Languagecoviiiiiinn... 545

Contents

Aboutthe AUTNOISo Xix
About the Technical Reviewer. XXi
AcKnowledgments. XXiii
Introduction XXV
CHAPTER1 TheEssenceofGrails 1
Simplicity and Power 2

Grails, the Platform. 4

Livinginthe JavaEcosystem.......... 4

Getting Started 5

Creating Your First Application..................................... 7

Step 1: Creating the Application............................... 7

Step 2: Creatinga Controller.t 8

Step 3: PrintingaMessage.................................. 10

Step 4: Testingthe Code ii.... 10

Step 5:Runningthe Tests. ..., 12

Step 6: Running the Application.............................. 13

QUMM ANY .. 15

CHAPTER2 Getting Started with Grails................................. 17
What Is Scaffolding? 17

CreatingaDomain it 17

Dynamic Scaffoldingl 19

The Create Operation................ i, 21

TheRead Operation it 23

The Update Operation................... ..., 25

The Delete Operationc.iiiiii.. 26

Static Scaffolding 27

Generatinga Controller 27

Generatingthe Views 32

Being Environmentally Friendly 33

vii

viii

CONTENTS

CHAPTER 3

CHAPTER 4

Configuring Data Sources ...t 34
The DataSource.groovy File............... 35
Configuring a MySQL Database 37
Configuring a JNDI Data Source.............................. 39
Supported Databases.................. ... 39

Deploying the Application, 4
Deploymentwithrun-war 3|
Deployment witha WARfile 4

SUMMANY .. 42

Understanding DomainClasses 45

Persisting Fields to the Database. 45

Validating Domain Classes, 46

Using Custom Validators 49

Understanding Transient Properties 50

Customizing Your Database Mapping.............................. 51

Building Relationships............. 53

Extending Classes with Inheritance. 56

Embedding Objects 59

Testing Domain Classes ..., 60

SUMMANY ... 63

Understanding Controllers 65

Defining Controllers 65
Setting the Default Action 66
LOgging. ... 67
Logging Exceptions. 68
Accessing Request Attributes 68
Using Controller SCOPes.ooviiiiiii e, 70
Understanding Flash Scope 71
Accessing Request Parameters 73
Rendering Text.............. 73
RedirectingaRequest 73

CreatingaModel......... 75

CONTENTS

RenderingaView i 76
Finding the Default View 76
Selectinga CustomView................., 76
Rendering Templates...................... 77

Performing Data Binding................ 77
Validating Incoming Data.................................... 78
The Errors APl and Controllers 79
Data Binding to Multiple Domain Objects...................... 80
Data Binding with the bindData Method 80
Data Binding and Associations 81

Working with Command Objects 82
Defining Command Objects.................................. 82
Using Command Objects ..., 83

Imposing HTTP Method Restrictions............................... 85
Implementing an Imperative Solution 85
Taking Advantage of a Declarative Syntax 85

Controller 10. 86
Handling FileUploads...................... 86
Reading the Request InputStream 89
Writing a Binary Response. 89

Using Simple Interceptors.o i 90
Before Advice ... 90
After Advice 91

Testing Controllers 91

Controllersin Action. i 93
Creating the gTunes Home Page 94
Adding the UserDomain Class 95
AddingaloginForm......... 96
Implementing Registration. 97
Testing the RegistrationCode. 100
Allowing UserstologIn............ 102
Testing the Login Process 104

SUMMaANY .. 106

ix

X

CONTENTS

CHAPTER 5

CHAPTER 6

Understanding Views...................................... 107
The BasiCSo 107
Understandingthe Model................................... 108
Page Directives 109
Groovy Scriptlets. 109
GSP as GStrings. ... 110
BUuilt-in Grails Tags. 11
Setting Variables with Tags................................. 11
Logical Tags.o 112
lterative Tags 113
Filtering and Iteration................. 114
Grails Dynamic Tagscoorieii 116
Linking Tags. 117
Creating Formsand Fields. 119
Validation and Error Handling 123
PaginatingViews. 125
Rendering GSP Templates.................................. 132
Creating Custom Tags ..., 136
CreatingaTagLibraryl 137
CustomTagBasics................cooiii i, 138
TestingaCustomTag.................cooii .. 139
SUMMANY ... 141
MappingURLs 143
Understanding the Default URL Mapping 143
Including Static Textina URL Mapping 144
Removing the Controller and Action Names fromthe URL 145
Embedding Parameters ina Mapping............................. 145
Specifying Additional Parameters 147
MappingtoaView i 148
Applying Constraints to URL Mappings............................ 149
Including Wildcards inaMapping 150
Mapping to HTTP Request Methods 151
Mapping HTTP Response Codes 153
Taking Advantage of Reverse URL Mapping 154
Defining Multiple URL Mappings Classes. 155
Testing URL Mappings. ... 155

SUMMaANY .. 158

CHAPTER 7

CHAPTER 8

CHAPTER 9

CONTENTS

Internationalization....................................... 159
Localizing Messages ... 159
Defining User Messagescciiiiiiaaia.. 159
Retrieving Message Values 161
Using URL Mappings for Internationalization 163
Using Parameterized Messages.coviiiiiiiiin... 164
Using java.text.MessageFormat 164
Using the message Tag for Parameterized Messages 165
Using Parameterized Messages for Validation................. 166
USiNg MESSAgESOUICEottt et 168
SUMMaANY .. 170
AJaX. ... 171
The Basics of Ajaxcoviii 171
Ajaxin Action. 173
Changing Your Ajax Provider, 174
Asynchronous Form Submission ...l 175
Executing Code Before and AfteraCall 177
HandlingEBvents 178
Fun with Ajax Remote Linking 179
Adding Effects and Animation 193
Ajax-Enabled Form Fields, 193
A Note on Ajax and Performance................................. 197
SUMMaANY .. 198
CreatingWebFlows 199
Getting Started with Flowso ..., 200
DefiningaFlowl 200
Definingthe StartState 200
DefiningEnd States i 201
Action States and View States 202
FIOW SCOPES. . ..o 204
Flows, Serialization, and Flow Storage 204
Triggering Events fromthe View 205
Transition Actions and Form Validation....................... 206

Subflows and Conversation Scope........................... 206

Xi

Xii CONTENTS

CHAPTER 10

FlowsinAction ... 208
Updatingthe Domain 209
UpdatingtheView......... 211
Definingthe Flow 212
AddingaStartStatel 212
Implementing the First View State........................... 216
Data Binding and Validation in Action 218
Action StatesinAction.............. 222
Reusing Actions with Closures 227
Using Command Objects with Flows 231
Dynamic Transitions. i 235
Verifying Flow State with Assertions 236
Testing FlOws. 244

SUMMaANY .. 247

GORM. ... 249

Persistence BasiCS 249
Reading Objects ...t 249
Listing, Sorting, and Counting............................... 250
Saving, Updating, and Deleting. 251

ASSOCIations. 252
Relationship Management Methods. 253
Transitive Persistencel 254

QUENYING. . .o 254
Dynamic Finders............. i 255
Criteria Queries i 257
QuerybyExample. ... 261
HQLand SQL, 261
Pagination............. 262

Configuring GORM 263
SALLOGYING. ..o 264
Specifyinga Custom Dialect................................ 264

Other Hibernate Propertiescoooiiiit, 265

CHAPTER 11

CONTENTS

The Semanticsof GORMt 265
The Hibernate Session.................... 266
Session Management and Flushing.......................... 267
Obtainingthe Session. ... 268
Automatic Session Flushing 270

Transactionsin GORM i, 272

Detached Objects 274
The Persistence Life Cycle..................... 274
Reattaching Detached Objects 276
Merging Changes ...t 277

Performance Tuning GORM 278
Eager vs. Lazy Associationsl 278
Batch Fetching........... 281
Caching. i 282
Inheritance Strategiesl 285

Locking Strategiesco i 285

Events Auto Time Stamping, 287

SUMMaANY .. 288

SeIVICeS 289

Service BasiCs. ... 289

Services and Dependency Injection. 291

ServicesinAction........ 291
DefiningaService.t 293
UsingaServicecoo i 294

Transactions o 295

SCOPING SEIVICES ... ot 297

Testing Services 298

EXpOSING SEIVICES.\t 298

SUMMANY . . 304

Xiii

Xiv

CONTENTS

CHAPTER 12

Integrating Grails ... 305
Grails and Configuration 305
Configuration Basics...................c. i 305
Environment-Specific Configuration 306
Configuring Loggingo i 306
Stack Trace Filtering. 309
Externalized Configuration.................................. 310
Understanding Grails’ Build System 310
Creating Gant Scripts................ 312
Command-Line Variables. 313
Parsing Command-Line Arguments.......................... 314
Documenting Your Scripts.............. ...l 315
Reusing More of Grails.t 316
Bootstrapping Grails from the Command Line................. 317
GantinAction..........l 317
Integration with Apache Ant.............. 325
Dependency Resolution with vy 327
Code Coverage with Cobertura. 330
Continuous Integration with Hudson 331
Adding Supportto Your Favorite IDE. 335
Intellid ... 336
NetBeansco i 337
EClipSe. ..o 338
TextMate. 342
Remote Debugging withanIDE 344
Integration with E-mail Servers 345
Scheduling Jobs 349
Installing the Quartz Plugin 349
Simpledobs 350
Crondobs 351
Interacting with the Scheduler 354
SchedulingJobs 354
Pausing and Resuming Jobs................. 355
TriggeringaJob 355
Adding and Removing Jobs. ...l 355

JobsinAction ... 356

CHAPTER 13

CHAPTER 14

CONTENTS

Deployment 361
DeployingwithGrails 361
Deployingtoa Containerccoiiiat, 361
Application Versioningand Metadata 362
Customizingthe WAR. 363
Populating the Database with BootStrap Classes 364

SUMMANY . .o 365

Plugins 367

Plugin Basics. ... 367
Plugin Discovery i 367
Plugininstallation 369
Local Plugins 370
CreatingPlugins i 370
Providing Plugin Metadata. 371
Supplying Application Artefacts 373
Plugin HooKS 374
PluginVariables. 375
Custom Artefact Types. ..., 376
Providing SpringBeans 379
Dynamic Spring Beans Using Conventions. 382
Using Metaprogramming to Enhance Behavior 383
Plugin Events and Application Reloading 385
Modifying the Generated WAR Descriptor. 388
Packaging and Distributing a Grails Plugin. 389
Local Plugin Repositories. 390

Pluginsin Action......... 391
Pluginsto Add Behavior.................................... 391
Plugins for Application Modularity 397

SUMMANY . . 406

Security ... 407

Securing Against Attacks 407
SQLorHQL Injection.l 407
Groovy Injection. 409
Cross-Site Scripting (XSS) 409
XSSand URLEscaping.................ocoii i, 411
Denial of Service (DOS).coiiiii 412

Batch Data Binding Vulnerability 413

Xv

XVi

CONTENTS

CHAPTER 15

CHAPTER 16

Using Dynamic COdECSc.ovirintii i 414
Authentication and Authorization................................. 416
Grails Filters. M7
The JSecurity Plugin ... 419
AuthenticationRealms 419
Subjects and Principalsl 420
Roles and Permissions. ...t 421
JSecurity in Action ... 421
Limiting Access Through URL Mappings 446
SUMMANY . .o 448
Web Services 449
REST .. 450
RESTful URL Mappings.t 450
Content Negotiation il 452
Content Negotiation with the ACCEPT Header................. 452
The ACCEPT Header and Older Browsers..................... 456
Content Negotiation with the CONTENT_TYPE Header. 457
Content Negotiation Using File Extensions 458
Content Negotiation with a Request Parameter................ 459
Content Negotiation and the View 459
Marshaling Objectsto XML 460
Marshaling Objectsto JSON 463
Unmarshaling XMLorJSONot 466
RESTand Security........... 472
AtomandRSS....... 473
Creating RSS and Atom Feeds 473
RSS and Atom Link Discovery............................... 476
SOAP . . 478
SOAP Web ServicesviaPlugins 479
Calling SOAP fromthe Client. 482
SUMMaANY .. 485
LeveragingSpring ... 487
Spring BasiCs. 487
Springand Grails, 489
Dependency Injectionand Grails 489

The BeanBuilder DSL, 490

CHAPTER 17

APPENDIX

CONTENTS

Spring in ACtion. 498
Integrating JMS with Spring JMS. 498
Mixing Groovy and Java with Spring......................... 513

SUMMANY . .o 516

Legacy Integration with Hibernate 519

Legacy Mapping withthe ORMDSL 519
Changing Table and Column Name Mappings................. 520
Changing Association Mappings.ccovvvinnt. 521
Understanding Hibernate Types 524
Changing the Database Identity Generator.................... 529
Using Composite Identifiers................................. 531

Mapping with Hibernate XML 532
EJB 3—Compliant Mapping 535
Using Constraints with POJO Entities 541

SUMMaANY .. 543

The Groovy Language 545

Groovy and Java: A Comparisonccoiiiii.... 545
What'stheSame?............... 546
What's Different? 546

The BasiCS 547
Declaring Classes . ..o 548
Language-Level Assertions.cooiiii... 548
Groovy Strings 549
CloSUMES . ..o 552
Lists, Maps,andRanges, 553
Expando Objectsl 555
Ranges ... 556

Groovy Power Features 557
Everythinglsan Object................. 557
Metaprogramming i 561
Understanding Builders 567

SUMMaANY .. 569

... 571

Xvii

About the Authors

GRAEME KEITH ROCHER is a software engineer and head of Grails devel-
opment at SpringSource (http://www.springsource.com), the company
behind the Spring Framework that underpins Grails. In his current
role, Graeme leads the ongoing development of the Grails framework,
driving product strategy and innovation for the Grails framework.

Graeme started his career in the e-learning sector as part of a team
developing scalable enterprise learning management systems based
on Java EE technology. He later branched into the digital TV arena,
where he faced increasingly complex requirements that required an
agile approach as the ever-changing and young digital TV platforms
evolved. This is where Graeme was first exposed to Groovy and where he began combining
Groovy with Cocoon to deliver dynamic multichannel content management systems targeted
at digital TV platforms.

Seeing an increasing trend for web delivery of services and the complexity it brought,
Graeme embarked on another project to simplify it and founded Grails. Grails is a framework
with the essence of other dynamic language frameworks but is targeted at tight Java integra-
tion. Graeme is the current project lead of Grails and is a member of the Groovy JSR-241
executive committee.

Before SpringSource, Graeme cofounded G20ne Inc.—The Groovy/Grails Company—
along with Guillaume Laforge (Groovy project lead) and Alex Tkachman (former JetBrains
COO0). G20ne provided consulting, training, and support for the Groovy and Grails technolo-
gies. In October 2008, SpringSource acquired G20ne, and Graeme, along with his colleagues at
G20ne, joined the number-one provider of enterprise software in the Java space. SpringSource
now provides training, support, consulting, and products for Groovy and Grails, as well as the
frameworks that underpin them such as Spring and Hibernate.

JEFF BROWN is a software engineer at SpringSource and a member of
the Groovy and Grails development teams. Jeff has been involved with
software engineering since the early 1990s and has designed and built
systems for industries including financial, biomedical, aerospace, and
others.

Jeff began his software engineering career building business sys-
tems in C and C++ targeting the Unix, OS/2, and Windows platforms.
As soon as the Java language came along, he realized that it was going
to be a very important technology moving forward. At this point, Jeff
joined Object Computing Inc. (http://www.ociweb.com/) based in St.
Louis, Missouri, where he spent the next 11 years building systems for the Java platform, coach-
ing and mentoring developers, developing and delivering training, and evangelizing.

Xix

ABOUT THE AUTHORS

While fully appreciating the power and flexibility offered by the Java platform, Jeff was
frustrated with the unnecessary complexity often associated with Java applications. In particu-
lar, web application development with Java seemed to have a ridiculous amount of complexity
that really had nothing at all to do with the real problems solved by the application. Jeff discov-
ered the Grails framework soon after Graeme founded the project. Here were the beginnings of
a solution that made so much more sense in so many ways. After digging in to the source code
of the project, Jeff began making contributions and eventually became a member of the Grails
development team.

Jeff eventually joined the team at G20ne Inc.—The Groovy/Grails Company—where he
would help drive the professional services side of the business. In late 2008, Jeff joined Spring-
Source when G20ne and SpringSource came together to leverage synergies between the
technologies created and supported by each company.

Through his entire career Jeff has always been a hands-on technologist actively involved in
software development, training, and mentoring. He is also an international public speaker,
having been featured regularly on the No Fluff Just Stuff Software Symposium tour (http://
www.nofluffjuststuff.com/) for a number of years.

About the Technical Reviewer

GUILLAUME LAFORGE is the Groovy project manager and the spec lead
of JSR-241, the Java specification request standardizing the Groovy
dynamic language. He coauthored Manning’s best-seller Groovy in
Action.

Along with Graeme Rocher, he founded G20ne Inc., the Groovy/
Grails company dedicated to sustaining and leading the development
of both Groovy and Grails and providing professional services (exper-
tise, consulting, support, and training) around those technologies. In
November 2008, SpringSource acquired G20ne, and now Groovy and
Grails bring additional weapons to the SpringSource portfolio to fight
the war on enterprise Java complexity.

You can meet Guillaume at conferences around the world where he evangelizes the Groovy
dynamic language, domain-specific languages in Groovy, and the agile Grails web framework.

Xxi

Acknowledgments

Erst and foremost, I'd like to thank my wife, Birjinia, for her beauty, wisdom, and continued
love and support. Over the last few years you have given me your total support and made sacri-
fices to the cause that I will value forever. Te quiero. Also, to my kids, Alex and Lexeia, who
provide little pockets of inspiration to me every day, and to all of my and Birjinia’s family,
thanks for your support and encouragement.

Also, thanks to everyone at Apress that I have worked with from Steve Anglin and Tom
Welsh to the people on the production team such as Nina Goldschlager and Kim Wimpsett (my
copy editors), Laura Cheu (production editor), and, in particular, Kylie Johnston (project man-
ager) for keeping the whole thing on track.

To Peter Ledbrook whose insight and contributions have been unbelievably valuable to the
community and me. To Marc Palmer for providing a voice of reason, intelligent debate, and
continued valuable contribution to Grails. To Alex Tkachman for his inspirational leadership at
G20ne and continued friendship. To the core members of the Groovy team, such as Guillaume
Laforge and Jochen “blackdrag” Theodorou, whose continued responsiveness makes Grails’
existence possible.

Also, without the support of the Grails community in general, we wouldn’t have gotten very
far. So, thanks to all the Grails users, in particular to Sven Haiges and Glen Smith for producing
the Grails podcast and screencasts and to all the plugin developers who make Grails a thriving
hive of activity.

Last, but most certainly not least, thanks to Rod Johnson, Adrian Coyler, Peter Cooper-Ellis,
and everyone at SpringSource for seeing the potential of Grails and granting me the privilege of
working for a fantastic company.

Graeme Rocher

I have to start by thanking my lovely wife, Betsy, and our unbelievable boys, Zack and Jake.
Thank you all for putting up with me being closed behind the door of my home office many eve-
nings as I worked on this book. You are all the absolute best!

Thanks to Graeme for his support as we worked through this project. It has been a lot of
hard work and a whole lot of fun.

I owe a great debt to Alex Tkachman, Graeme Rocher, and Guillaume Laforge. G20ne was
absolutely the most exciting, challenging, and rewarding professional experience I have ever
been involved with. It truly is an honor and a pleasure to know and work with you guys.

Thanks to Matt Taylor for all of the great work we have done together starting back at OCI,
then G20ne, and now SpringSource.

For more than a decade of professional accomplishments, I have to thank all my friends at
OCI. I especially want to thank my friend Dr. Ebrahim Mosbhiri for the great opportunities and
years of support. Thank you, sir. Also, I thank Mario Aquino. There are so many folks at OCI who

xxiii

XXiv

ACKNOWLEDGMENTS

I enjoyed working with and continue to enjoy a friendship with, none of them more than Mario.
Thanks for everything, man. The next one is on me.
Thanks to the whole team at Apress. I appreciate all of your hard work and patience.
Thanks to Kylie Johnston (project manager) for helping us navigate through the whole thing.
I also have to thank Rod Johnson and the whole team at SpringSource. We have a lot of
really exciting stuff ahead of us, and I truly look forward to it.
Jeff Brown

Introduction

In the late '90s I was working on a project developing large-scale enterprise learning manage-
ment systems using early J2EE technologies such as EJB 1.0 and the Servlet framework. The Java
hype machine was in full swing, and references to “EJB that, and Java this” were on the cover of
every major IT publication.

Even though what we were doing—and learning as we did it—felt so horribly wrong, the
industry kept telling us we were doing the right thing. EJB was going to solve all our problems,
and servlets (even without a view technology at the time) were the right thing to use. My, how
times have changed.

Nowadays, Java and J2EE are long-forgotten buzzwords, and the hype machine is throwing
other complex acronyms at us such as SOA and ESB. In my experience, developers are on a con-
tinued mission to write less code. The monolithic J2EE specifications, like those adopted by the
development community in the early days, didn’t help. If a framework or a specification is overly
complex and requires you to write reams of repetitive code, it should be an immediate big red
flag. Why did we have to write so much repetitive boilerplate code? Surely there was a better way.

In the end, developers often influence the direction of technology more than they know. Why
do so many developers favor REST over SOAP for web services? Or Hibernate over EJB for persis-
tence? Or Spring over JNDI for Inversion of Control? In the end, simplicity often wins the day.

Certainly, working with Spring and Hibernate feels a lot better than traditional J2EE
approaches; in fact, I strove to use them whenever possible, usually in combination with Web-
Work, and delivered a number of successful projects with this stack. Nevertheless, I still felt I
had to deal with the surrounding infrastructural issues and configuration, rather than the prob-
lem at hand. After all, the more efficient I could be as a developer when doing “real” work, the
more time I would have to do what should be driving every developer: spending time with loved
ones and learning new and exciting technologies.

In 2003, Groovy entered the picture. I had always been fond of looser rules governing
dynamic languages in certain contexts, having worked extensively with Perl, Visual Basic, and
JavaScript in the past, and after quickly hacking the WebWork source code, I was able to write
MVC controllers (or actions in WebWork lingo) with Groovy in no time.

Groovy was perfect for controllers whose sole responsibility should be to delegate to busi-
ness logic implemented by a service and then display an appropriate view. I was starting to
have even more time for the good things in life. Then came the storm of dynamic language-
based frameworks led by Ruby on Rails.

Unfortunately, it was all a little late. Java, the community, the tools, the frameworks, and
the mind share are well-embedded. The size that Java has grown to is quite staggering, and hav-
ing been in the training business for many years, I see it showing no signs of slowing, contrary
to popular belief. Still, Java has its problems, and I wanted to write less code. Grails was born
with this goal in mind in the summer of 2005 after I, Steven Devijver, and Guillaume Laforge
kicked off a discussion about its conception on the Groovy mailing list.

Fundamentally, there is nothing at all wrong with many of the specifications that form part
of J2EE. They are, however, at a rather low level of abstraction. Frameworks such as Struts,

XXV

XXVi

INTRODUCTION

WebWork, and more recently JSF have tried to resolve this issue; however, Java and its static
typing don’t help. Groovy, on the other hand, allows that higher level of abstraction. Having
used it for controllers, it was now time to take it to every layer—from controllers to tag libraries
and from persistence to the view technology.

The APIs you can create with Groovy’s metaprogramming support are amazingly simple
and concise. Grails uses every single dynamic trick, at both runtime and compile time, from
custom domain-specific languages to compile-time mixins, with two fundamental goals in
mind: write less code and be Java friendly.

Are Groovy and Grails a replacement for Java, like other dynamic language frameworks?
No, on the contrary, they're designed to work with Java. To embrace it. To have Java at their
very core. Grails is Java through and through, and it allows you to pick and choose which fea-
tures to implement with dynamic typing and which to entrust to the safer hands of static
typing.

Grails was born from the realization that there is never only just one tool for the job. Grails
is about providing an entry point for the trivial tasks, while still allowing the power and flexibil-
ity to harness the full Java platform when needed. I hope you enjoy the book as much as I have
enjoyed writing it and being part of the Grails community.

—Graeme Rocher

Who This Book Is For

Grails forms just one framework that is driving the movement toward dynamic language-based
frameworks. In this sense, anyone who is interested in dynamic languages, whether Perl, Ruby,
or Python, will gain something from reading this book, if just to acquire insight into what the
alternatives are.

If platform is not a choice and Java is the way your project is going, Grails can provide
features like no other framework. In this circumstance, Grails may have the answers you are
looking for. Primarily, however, this book will be of most benefit to those who know and love
the Java platform—those who appreciate the Java language for all its strong points but want
something better as a web framework.

Grails is providing the answers to the long search for something better in the Java world by
presenting a framework that solves the common problems in an unobtrusive, elegant manner.
But this does not mean that the subject matter of this book is trivial. We’ll be challenging you
with advanced usages of the Groovy language and real-world examples.

Furthermore, you'll be pushing the boundaries of what is possible with a dynamic lan-
guage like Groovy, extending it into every tier of a typical web application from the view layer
with Ajax-enabled technology to the persistence tier with rich domain models. For experienced
Java developers, it should be an enlightening experience, because we’ll explore features not
found in Java such as closures, builders, and metaprogramming.

Through all this, however, although the subject matter and examples are advanced, the
solutions are simple, and along the way you may learn a new way to approach web application
development.

INTRODUCTION

How This Book Is Structured

This book is divided into 17 chapters and one appendix. Unlike the first edition, coverage of
Groovy is saved for the appendix. If you have no experience using Groovy, then it is recom-
mended that you read the appendix first as the chapters themselves dive straight into Grails
starting with Chapter 1, which covers the basic philosophy behind Grails.

In Chapter 2 we take you through a kick-start, demonstrating how you can quickly get
productive with Grails. Then from Chapter 3 onward we delve into detailed coverage of each
concept within Grails from domain classes in Chapter 3 to views in Chapter 5. By this point, you
should have a good understanding of the basics.

The book will then dive straight into the nitty-gritty details of Grails in Chapter 6 with cov-
erage of URL mappings, followed by the multilingual experience that is internationalization in
Chapter 7. If you haven’t had enough excitement by this point, then Chapter 8 should solve that
with coverage of Grails’ support for adaptive Ajax.

In Chapter 9 the book will begin to cover some of the more advanced features of Grails star-
ing with Web Flow. In Chapter 10 you'll get a much better understanding of how GORM works,
while in Chapter 11 you’ll learn how to leverage declarative transactions with Grails services.

Chapter 12 goes into a lot of detail on how you can integrate Grails into your existing eco-
system; then in Chapter 13 you will get to become a Grails plugin developer as you explore the
features offered by Grails’ plugin system. Security is the focal point for Chapter 14, while in
Chapter 15 we’ll cover publishing web services with Grails.

Finally, Chapter 16 and Chapter 17 are dedicated to the more advanced topics of integrat-
ing Grails with the underlying Spring and Hibernate frameworks.

Conventions

This book uses a diverse range of languages, including HTML, XML, JavaScript, Groovy, and
Java. Nonetheless, each example is introduced appropriately and appears in a fixed-width
Courier font. We have also endeavored to be consistent in the use of naming conventions
throughout the book, making the examples as clear as possible.

In many cases, the original source code has been reformatted to fit within the available
page space, with additional line breaks and modified code indentation being common. To
increase the clarity of the code, some examples omit code where it is seen as unnecessary. In
cases where the code is omitted between two blocks of code, an ellipsis (...) is used to indicate
where the missing code would have been.

Prerequisites

This book shows you how to install Grails; in the examples, we use the 1.1 release. As of this
writing, the 1.1 release was not quite final, but by the time of publication, Grails 1.1 should be
final (or nearly so). However, Grails itself is dependent on the existence of an installed Java Vir-
tual Machine. As a minimum, you will need to install JDK 1.5 or newer for the examples in this
book to work.

XXvii

xxviii

INTRODUCTION

Installing an application server, such as Tomcat, and a database server, such as MySQL, is
entirely optional, because Grails comes bundled with an embedded server and database. Nev-
ertheless, to use Grails in production, you may at least want to set up a database server.

Downloading the Code

The code for the examples in this book is available in the Source Code section of the Apress web
site at http://www.apress.com. Chapter-by-chapter source code is also available in the Code-
haus Subversion repository at http://svn.codehaus.org/grails/trunk/samples/dgg.

Contacting the Authors

Graeme is an active member of the open source community and welcomes any com-

ments and/or communication. You can reach him via e-mail at graeme.rocher@gmail.com
or via his blog at http://graemerocher.blogspot.com. You can reach Jeff via e-mail at
jeff@jeffandbetsy.net or via his blog at http://javajeff.blogspot.com. Alternatively, you
can simply pop a message on the Grails mailing lists, the details for which can be found here:
http://grails.org/Mailing+lists.

CHAPTER 1

The Essence of Grails

Simplicity is the ultimate sophistication.

—Leonardo da Vinci

To understand Grails, you first need to understand its goal: to dramatically simplify enterprise
Java web development. To take web development to the next level of abstraction. To tap into
what has been accessible to developers on other platforms for years. To have all this but still
retain the flexibility to drop down into the underlying technologies and utilize their richness
and maturity. Simply put, we Java developers want to “have our cake and eat it too.”

Have you faced the pain of dealing with multiple, crippling XML configuration files and an
agonizing build system where testing a single change takes minutes instead of seconds? Grails
brings back the fun of development on the Java platform, removing barriers and exposing users
to APIs that enable them to focus purely on the business problem at hand. No configuration,
zero overhead, immediate turnaround.

You might be wondering how you can achieve this remarkable feat. Grails embraces con-
cepts such as Convention over Configuration (CoC), Don’t Repeat Yourself (DRY), and sensible
defaults that are enabled through the terse Groovy language and an array of domain-specific
languages (DSLs) that make your life easier.

As abudding Grails developer, you might think you’re cheating somehow, that you should
be experiencing more pain. After all, you can’t squash a two-hour gym workout into twenty
minutes, can you? There must be payback somewhere, maybe in extra pounds?

As a developer you have the assurance that you are standing on the shoulders of giants
with the technologies that underpin Grails: Spring, Hibernate, and, of course, the Java plat-
form. Grails takes the best of dynamic language frameworks like Ruby on Rails, Django, and
TurboGears and brings them to a Java Virtual Machine (JVM) near you.

CHAPTER 1 THE ESSENCE OF GRAILS

Simplicity and Power

Afactor that clearly sets Grails apart from its competitors is evident in the design choices made
during its development. By not reinventing the wheel, and by leveraging tried and trusted
frameworks such as Spring and Hibernate, Grails can deliver features that make your life easier
without sacrificing robustness.

Grails is powered by some of the most popular open source technologies in their respec-
tive categories:

* Hibernate: The de facto standard for object-relational mapping (ORM) in the Java world

e Spring: The hugely popular open source Inversion of Control (IoC) container and wrap-
per framework for Java

e SiteMesh: A robust and stable layout-rendering framework
* Jetty: A proven, embeddable servlet container

* HSQLDB: A pure Java Relational Database Management System (RDBMS)
implementation

The concepts of ORM and IoC might seem a little alien to some readers. ORM simply
serves as a way to map objects from the object-oriented world onto tables in a relational data-
base. ORM provides an additional abstraction above SQL, allowing developers to think about
their domain model instead of getting wrapped up in reams of SQL.

IoC provides a way of “wiring” together objects so that their dependencies are available
atruntime. As an example, an object that performs persistence might require access to a
data source. IoCrelieves the developer of the responsibility of obtaining a reference to the data
source. But don’t get too wrapped up in these concepts for the moment, as their usage will
become clear later in the book.

You benefit from Grails because it wraps these frameworks by introducing another layer of
abstraction via the Groovy language. You, as a developer, will not know that you are building a
Spring and Hibernate application. Certainly, you won’t need to touch a single line of Hibernate
or Spring XML, but it is there at your fingertips if you need it. Figure 1-1 illustrates how Grails
relates to these frameworks and the enterprise Java stack.

CHAPTER 1 THE ESSENCE OF GRAILS

Grails

Java EE Spring Hibernate SiteMesh

Groovy

The Java Development Kit

The Java Language
(JDK)

The Java Virtual Machine

Figure 1-1. The Grails stack

Grails, the Platform

When approaching Grails, you might suddenly experience a deep inhalation of breath followed
by an outcry of “not another web framework!?” That’s understandable, given the dozens of web
frameworks that exist for Java. But Grails is different, and in a good way. Grails is a full-stack
environment, not just a web framework. It is a platform with ambitious aims to handle every-
thing from the view layer down to your persistence concerns.

In addition, through its plugins system (covered in Chapter 13), Grails aims to provide
solutions to an extended set of problems that might not be covered out of the box. With Grails

you can accomplish searching, job scheduling, enterprise messaging and remoting, and more.

The sheer breadth of Grails’ coverage might conjure up unknown horrors and nightmarish
thoughts of configuration, configuration, configuration. However, even in its plugins, Grails
embraces Convention over Configuration and sensible defaults to minimize the work required
to get up and running.

We encourage you to think of Grails as not just another web framework, but the platform
upon which you plan to build your next web 2.0 phenomenon.

3

CHAPTER 1 THE ESSENCE OF GRAILS

Living in the Java Ecosystem

As well as leveraging Java frameworks that you know and love, Grails gives you a platform that
allows you to take full advantage of Java and the JVM—thanks to Groovy. No other dynamic
language on the JVM integrates with Java like Groovy. Groovy is designed to work seamlessly
with Java at every level. Starting with syntax, the similarities continue:

¢ The Groovy grammar is derived from the Java 5 grammar, making most valid Java code
also valid Groovy code.

¢ Groovy shares the same underlying APIs as Java, so your trusty javadocs are still valid!

* Groovy objects are Java objects. This has powerful implications that might not be immedi-
ately apparent. For example, a Groovy object can implement java.io.Serializable and be
sent over Remote Method Invocation (RMI) or clustered using session-replication tools.

¢ Through Groovy’s joint compiler you can have circular references between Groovy and
Java without running into compilation issues.

* With Groovy you can easily use the same profiling tools, the same monitoring tools, and
all existing and future Java technologies.

Groovy’s ability to integrate seamlessly with Java, along with its Java-like syntax, is the
number-one reason why so much hype was generated around its conception. Here we had a
language with similar capabilities to languages such as Ruby and Smalltalk running directly
in the JVM. The potential is obvious, and the ability to intermingle Java code with dynamic
Groovy code is huge. In addition, Groovy allows you to mix static types and dynamic types,
combining the safety of static typing with the power and flexibility to use dynamic typing
where necessary.

This level of Java integration is what drives Groovy’s continued popularity, particularly
in the world of web applications. Across different programming platforms, varying idioms
essentially express the same concept. In the Java world we have servlets, filters, tag libraries,
and JavaServer Pages (JSP). Moving to a new platform requires relearning all of these con-
cepts and their equivalent APIs or idioms—easy for some, a challenge for others. Not that
learning new things is bad, but a cost is attached to knowledge gain in the real world, which
can present a major stumbling block in the adoption of any new technology that deviates
from the standards or conventions defined within the Java platform and the enterprise.

In addition, Java has standards for deployment, management, security, naming, and
more. The goal of Grails is to create a platform with the essence of frameworks like Rails or
Django or CakePHP, but one that embraces the mature environment of Java Enterprise Edition
(Java EE) and its associated APIs.

CHAPTER 1 THE ESSENCE OF GRAILS

Grails is, however, one of these technologies that speaks for itself: the moment you experi-
ence using it, a little light bulb will go on inside your head. So without delay, let’s get moving
with the example application that will flow throughout the course of this book. Whereas in this
book’s first edition we featured a social-bookmarking application modeled on the del.icio.us
service, in this edition we’ll illustrate an entirely new type of application: gTunes.

Our gTunes example will guide you through the development of a music store similar to
those provided by Apple, Amazon, and Napster. An application of this nature opens up a wide
variety of interesting possibilities from e-commerce to RESTful APIs and RSS or Atom feeds.
We hope it will give you a broad understanding of Grails and its feature set.

Getting Started

Grails’ installation is almost as simple as its usage, but you must take into account at least one
prerequisite. Grails requires a valid installation of the Java SDK 1.5 or above which, of course,
you can obtain from Sun Microsystems at http://java.sun.com.

After installing the Java SDK, set the JAVA_HOME environment variable to the location where
you installed it and add the JAVA_HOME/bin directory to your PATH variables.

Note If you are working on Mac 0S X, you already have Java installed! However, you still need to set
JAVA_HOME in your ~/.profile file.

To test your installation, open up a command prompt and type java -version:
$java -version

You should see output similar to Listing 1-1.

Listing 1-1. Running the Java Executable

java version "1.5.0 13"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0 13-b05-237)
Java HotSpot(TM) Client VM (build 1.5.0 13-119, mixed mode, sharing)

As is typical with many other Java frameworks such as Apache Tomcat and Apache Ant,
the installation process involves following a few simple steps. Download and unzip Grails
from http://grails.org, create a GRAILS_HOME variable that points to the location where
you installed Grails, and add the GRAILS_HOME/bin directory to your PATH variable.

CHAPTER 1 THE ESSENCE OF GRAILS

To validate your installation, open a command window and type the command grails:
$ grails
If you have successfully installed Grails, the command will output the usage help shown in

Listing 1-2.

Listing 1-2. Running the Grails Executable

Welcome to Grails 1.1 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /Developer/grails-1.1

No script name specified. Use 'grails help' for more info or 'grails interactive' to

enter interactive mode

As suggested by the output in Listing 1-2, typing grails help will display more usage
information including a list of available commands. If more information about a particular
command is needed, you can append the command name to the help command. For exam-
ple, if you want to know more about the create-app command, simply type grails help
create-app:

$ grails help create-app

Listing 1-3 provides an example of the typical output.

Listing 1-3. Getting Help on a Command

Usage (optionals marked with *):
grails [environment]* create-app

grails create-app -- Creates a Grails project, including the necessary
directory structure and common files

Grails’ command-line interface is built on another Groovy-based project called
Gant (http://gant.codehaus.org/), which wraps the ever-popular Apache Ant
(http://ant.apache.org/) build system. Gant allows seamless mixing of Ant targets
and Groovy code.

We'll discuss the Grails command line further in Chapter 12.

CHAPTER 1 THE ESSENCE OF GRAILS

Creating Your First Application

In this section you're going to create your first Grails application, which will include a simple
controller. Here are the steps you'll take to achieve this:

1. Run the command grails create-app gTunes to create the application (with “gTunes”
being the application’s name).

2. Navigate into the gTunes directory by issuing the command cd gTunes.

3. Create a storefront controller with the command grails create-controller store.
4, Write some code to display a welcome message to the user.

5. Test your code and run the tests with grails test-app.

6. Run the application with grails run-app.

Step 1: Creating the Application

Sound easy? It is, and your first port of call is the create-app command, which you managed to
extract some help on in the previous section. To run the command, simply type grails create-
app and hit Enter in the command window:

$ grails create-app

Grails will automatically prompt you for a project name as presented in Listing 1-4. When
this happens, type gTunes and hit Enter. As an alternative, you could use the command grails
create-app gTunes, in which cases Grails takes the appropriate action automatically.

Listing 1-4. Creating an Application with the create-app Command

Running script /Developer/grails-dev/GRAILS 1 1/scripts/CreateApp.groovy
Environment set to development
Application name not specified. Please enter: gTunes

Upon completion, the command will have created the gTunes Grails application and the
necessary directory structure. The next step is to navigate to the newly created application in
the command window using the shell command:

cd gTunes

At this point you have a clean slate—a newly created Grails application—with the default
settings in place. A screenshot of the structure of a Grails application appears in Figure 1-2.

We will delve deeper into the structure of a Grails application and the roles of the various
files and directories as we progress through the book. You will notice, however, how Grails con-
tains directories for controllers, domain objects (models), and views.

CHAPTER 1 THE ESSENCE OF GRAILS
®00 =
<[r) [z B m[m] [-) |
¥ DEVICES Name Date Modified |
IDisk €| application.properties Today, 14:01
= Mac HD 9" build.xml Today, 14:01
¥ PLACES » [conf Today, 14:01
[Eq Deskiop > E controllers Today, 14:01
) dtaemsrochier > I_J domain Today, 14:01
S » [i18n Today, 14:01
ﬁ Applications
@ e » @ serv.lces Today, 14:01
_ » [taglib Today, 14:01
B vovies > 3 utils Today, 14:01
J3 Music v [views Today, 14:01
(] Developer [error.gsp Today, 14:01
[Pictures » [layouts Today, 14:01
(.o Downloads |:| gTunes.launch Today, 14:01
Dropbox ﬂ gTunes.tmproj Today, 14:01
» &b Today, 14:01
> SEARCH FOR » [scripts Today, 14:01
» [src Today, 14:01
> [test Today, 14:01
» [web-app Today, 14:01

Figure 1-2. The gTunes application structure

Step 2: Creating a Controller

Grails is an MVC! framework, which means it has models, views, and controllers to separate
concerns cleanly. Controllers, which are central to a Grails application, can easily marshal
requests, deliver responses, and delegate to views. Because the g